Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riemannian manifold
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Submanifolds === {{Main|Riemannian submanifold}} [[File:Sphere filled blue.svg|thumb|The [[N-sphere|<math>n</math>-sphere]] <math>S^n</math> with the round metric is an embedded Riemannian submanifold of <math>\mathbb R^{n+1}</math>.]] Let <math>(M,g)</math> be a Riemannian manifold and let <math>i : N \to M</math> be an [[immersed submanifold]] or an [[embedded submanifold]] of <math>M</math>. The [[Pullback (differential geometry)|pullback]] <math>i^*g</math> of <math>g</math> is a Riemannian metric on <math>N</math>, and <math>(N, i^*g)</math> is said to be a ''Riemannian submanifold'' of <math>(M,g)</math>.{{sfn|Lee|2018|p=15}} In the case where <math>N \subseteq M</math>, the map <math>i : N \to M</math> is given by <math>i(x) = x</math> and the metric <math>i^*g</math> is just the restriction of <math>g</math> to vectors tangent along <math>N</math>. In general, the formula for <math>i^*g</math> is : <math>i^*g_p(v,w) = g_{i(p)} \big( di_p(v), di_p(w) \big), </math> where <math>di_p(v)</math> is the [[pushforward (differential)|pushforward]] of <math>v</math> by <math>i.</math> Examples: * The [[N-sphere|<math>n</math>-sphere]] *: <math>S^n=\{x\in\mathbb{R}^{n+1}:(x^1)^2+\cdots+(x^{n+1})^2=1\}</math> :is a smooth embedded submanifold of Euclidean space <math>\mathbb R^{n+1}</math>.{{sfn|Lee|2018|p=16}} The Riemannian metric this induces on <math>S^n</math> is called the ''round metric'' or ''standard metric''. * Fix real numbers <math>a,b,c</math>. The [[ellipsoid]] *:<math>\left\{(x,y,z) \in \mathbb R^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right\}</math> :is a smooth embedded submanifold of Euclidean space <math>\mathbb R^3</math>. * The [[Graph_of_a_function|graph]] of a smooth function <math>f:\mathbb{R}^n\to\mathbb{R}</math> is a smooth embedded submanifold of <math>\mathbb{R}^{n+1}</math> with its standard metric. * If <math>(M,g)</math> is not simply connected, there is a covering map <math>\widetilde{M}\to M</math>, where <math>\widetilde M</math> is the [[universal cover]] of <math>M</math>. This is an immersion (since it is locally a diffeomorphism), so <math>\widetilde M</math> automatically inherits a Riemannian metric. By the same principle, any [[smooth covering space]] of a Riemannian manifold inherits a Riemannian metric. On the other hand, if <math>N</math> already has a Riemannian metric <math>\tilde g</math>, then the immersion (or embedding) <math>i : N \to M</math> is called an ''[[isometric immersion]]'' (or ''[[isometric embedding]]'') if <math>\tilde g = i^* g</math>. Hence isometric immersions and isometric embeddings are Riemannian submanifolds.{{sfn|Lee|2018|p=15}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riemannian manifold
(section)
Add topic