Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quantum teleportation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Certifying quantum teleportation == When implementing the quantum teleportation protocol, different experimental noises may arise affecting the state transference.<ref>{{Cite journal |last1=Knoll |first1=Laura T. |last2=Schmiegelow |first2=Christian T. |last3=Larotonda |first3=Miguel A. |date=2014-10-28 |title=Noisy quantum teleportation: An experimental study on the influence of local environments |url=https://link.aps.org/doi/10.1103/PhysRevA.90.042332 |journal=Physical Review A |volume=90 |issue=4 |pages=042332 |doi=10.1103/PhysRevA.90.042332|arxiv=1410.5771 |bibcode=2014PhRvA..90d2332K |hdl=11336/29814 }}</ref> The usual way to benchmark a particular teleportation procedure is by using the average [[Fidelity of quantum states|fidelity]]: Given an arbitrary teleportation protocol producing output states <math>\rho_i</math> with probability <math>p_i</math> for an initial state <math>\rho=|\psi\rangle \langle \psi|</math>, the average fidelity is defined as:<ref>{{Cite journal |last1=Pirandola |first1=S. |last2=Eisert |first2=J. |last3=Weedbrook |first3=C. |last4=Furusawa |first4=A. |last5=Braunstein |first5=S. L. |date=October 2015 |title=Advances in quantum teleportation |url=https://www.nature.com/articles/nphoton.2015.154 |journal=Nature Photonics |language=en |volume=9 |issue=10 |pages=641–652 |doi=10.1038/nphoton.2015.154 |arxiv=1505.07831 |bibcode=2015NaPho...9..641P |issn=1749-4893}}</ref> <math>\langle \overline{F} \rangle = \int \sum_i p_i F(\rho,\rho_i) d\psi</math> where the integration is performed over the [[Haar measure]] defined by assuming maximal uncertainty over the initial quantum states <math>|\psi \rangle</math>, and <math>F(\rho,\rho_i)=\left(\text{Tr}\sqrt{\sqrt{\rho}\rho_i\sqrt{\rho}}\right)^2</math> is the Uhlmann-Jozsa [[Fidelity of quantum states|fidelity]]. The widely known classical threshold is obtained by optimizing the average fidelity over all classical protocols (i.e. when the sender Alice and the receiver Bob can use just a classical channel to communicate with each other). When teleportation involves qubit states, the maximal classical average fidelity is <math>2/3</math>.<ref>{{Cite journal |last1=Massar |first1=S. |last2=Popescu |first2=S. |date=1995-02-20 |title=Optimal Extraction of Information from Finite Quantum Ensembles |url=https://link.aps.org/doi/10.1103/PhysRevLett.74.1259 |journal=Physical Review Letters |volume=74 |issue=8 |pages=1259–1263 |doi=10.1103/PhysRevLett.74.1259|pmid=10058975 |bibcode=1995PhRvL..74.1259M }}</ref><ref>{{Cite journal |last1=Vidal |first1=G. |last2=Latorre |first2=J. I. |last3=Pascual |first3=P. |last4=Tarrach |first4=R. |date=1999-07-01 |title=Optimal minimal measurements of mixed states |url=http://dx.doi.org/10.1103/physreva.60.126 |journal=Physical Review A |volume=60 |issue=1 |pages=126–135 |doi=10.1103/physreva.60.126 |arxiv=quant-ph/9812068 |bibcode=1999PhRvA..60..126V |issn=1050-2947}}</ref> In this way, a particular protocol with average fidelity <math>\langle \overline{F} \rangle</math> is certified as ''useful'' if <math>\langle \overline{F} \rangle \geq 2/3</math>.<ref name="sat1400" /><ref name="Danube2004" /><ref name="Ma-2012" /> However, using the Uhlmann-Jozsa [[Fidelity of quantum states|fidelity]] as the ''unique'' distance measure for benchmarking teleportation is not justified, and one may choose different distinguishability measures.<ref>{{Cite journal |last=Popescu |first=Sandu |date=1994-02-07 |title=Bell's inequalities versus teleportation: What is nonlocality? |url=https://link.aps.org/doi/10.1103/PhysRevLett.72.797 |journal=Physical Review Letters |volume=72 |issue=6 |pages=797–799 |doi=10.1103/PhysRevLett.72.797|pmid=10056537 |bibcode=1994PhRvL..72..797P }}</ref> For example, there may exist reasons depending on the context in which other measures might be more suitable than fidelity.<ref>{{Cite journal |last1=Ribeiro |first1=G. A. P. |last2=Rigolin |first2=Gustavo |date=2024-06-14 |title=Finite-temperature detection of quantum critical points: A comparative study |url=https://link.aps.org/doi/10.1103/PhysRevB.109.245122 |journal=Physical Review B |volume=109 |issue=24 |pages=245122 |doi=10.1103/PhysRevB.109.245122|arxiv=2406.10178 |bibcode=2024PhRvB.109x5122R }}</ref> In this way, the average distance of teleportation is defined as:<ref name="Bussandri-2024">{{Cite journal |last1=Bussandri |first1=D. G. |last2=Bosyk |first2=G. M. |last3=Toscano |first3=F. |date=2024-03-22 |title=Challenges in certifying quantum teleportation: Moving beyond the conventional fidelity benchmark |url=https://link.aps.org/doi/10.1103/PhysRevA.109.032618 |journal=Physical Review A |volume=109 |issue=3 |pages=032618 |doi=10.1103/PhysRevA.109.032618|arxiv=2403.07994 |bibcode=2024PhRvA.109c2618B }}</ref> <math>\langle \overline{D} \rangle = \int \sum_i p_i D(\rho,\rho_i) d\psi</math> being <math>D(\rho,\sigma)</math> a well-behaved (i.e. satisfying identity of indiscernibles and unitary invariance) distinguishability measure between quantum states. Consequently, different classical thresholds exist, depending on the considered distance measure (classical thresholds for [[Trace distance]], quantum [[Jensen–Shannon divergence]], transmission distance, [[Bures distance]], wootters distance, and quantum Hellinger distance, among others, were obtained in Ref. <ref name="Bussandri-2024" />). This points out a particular issue when certifying quantum teleportation: Given a teleportation protocol, its certification is not a universal fact in the sense that depends on the distance used. Then, a particular protocol might be certified as useful for a set of distance quantifiers, and non-useful for other distinguishability measures.<ref name="Bussandri-2024" />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quantum teleportation
(section)
Add topic