Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Quadric
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Projective quadrics over fields == The definition of a projective quadric in a real projective space (see above) can be formally adapted by defining a projective quadric in an ''n''-dimensional projective space over a [[Field (mathematics)|field]]. In order to omit dealing with coordinates, a projective quadric is usually defined by starting with a quadratic form on a vector space.<ref>Beutelspacher/Rosenbaum p.158</ref> ===Quadratic form=== Let <math>K</math> be a [[Field (algebra)|field]] and <math>V</math> a [[vector space]] over <math>K</math>. A mapping <math>q</math> from <math>V</math> to <math>K</math> such that : '''(Q1)''' <math>\;q(\lambda\vec x)=\lambda^2q(\vec x )\;</math> for any <math>\lambda\in K</math> and <math>\vec x \in V</math>. : '''(Q2)''' <math>\;f(\vec x,\vec y ):=q(\vec x+\vec y)-q(\vec x)-q(\vec y)\;</math> is a [[bilinear form]]. is called '''[[quadratic form]]'''. The bilinear form <math>f</math> is symmetric''.'' In case of <math>\operatorname{char}K\ne2</math> the bilinear form is <math>f(\vec x,\vec x)=2q(\vec x)</math>, i.e. <math>f</math> and <math>q</math> are mutually determined in a unique way.<br /> In case of <math>\operatorname{char}K=2</math> (that means: <math>1+1=0</math>) the bilinear form has the property <math>f(\vec x,\vec x)=0</math>, i.e. <math>f</math> is ''[[Symplectic vector space|symplectic]]''. For <math>V=K^n\ </math> and <math>\ \vec x=\sum_{i=1}^{n}x_i\vec e_i\quad </math> (<math>\{\vec e_1,\ldots,\vec e_n\} </math> is a base of <math>V</math>) <math>\ q</math> has the familiar form : <math> q(\vec x)=\sum_{1=i\le k}^{n} a_{ik}x_ix_k\ \text{ with }\ a_{ik}:= f(\vec e_i,\vec e_k)\ \text{ for }\ i\ne k\ \text{ and }\ a_{ii}:= q(\vec e_i)\ </math> and : <math> f(\vec x,\vec y)=\sum_{1=i\le k}^{n} a_{ik}(x_iy_k+x_ky_i)</math>. For example: : <math>n=3,\quad q(\vec x)=x_1x_2-x^2_3, \quad f(\vec x,\vec y)=x_1y_2+x_2y_1-2x_3y_3\; . </math> === ''n''-dimensional projective space over a field === Let <math>K</math> be a field, <math>2\le n\in\N</math>, :<math>V_{n+1}</math> an {{math|(''n'' + 1)}}-[[dimension (vector space)|dimensional]] [[vector space]] over the field <math>K,</math> :<math>\langle\vec x\rangle</math> the 1-dimensional [[linear span|subspace generated by <math>\vec 0\ne \vec x\in V_{n+1}</math>]], : <math>{\mathcal P}=\{\langle \vec x\rangle \mid \vec x \in V_{n+1}\},\ </math> the ''set of points'' , : <math>{\mathcal G}=\{ \text{2-dimensional subspaces of } V_{n+1}\},\ </math> the ''set of lines''. :<math>P_n(K)=({\mathcal P},{\mathcal G})\ </math> is the {{mvar|n}}-dimensional '''[[projective space]]''' over <math>K</math>. :The set of points contained in a <math>(k+1)</math>-dimensional subspace of <math> V_{n+1}</math> is a ''<math>k</math>-dimensional subspace'' of <math>P_n(K)</math>. A 2-dimensional subspace is a ''plane''. :In case of <math>\;n>3\;</math> a <math>(n-1)</math>-dimensional subspace is called ''hyperplane''. === Projective quadric === A quadratic form <math>q</math> on a vector space <math>V_{n+1}</math> defines a ''quadric'' <math>\mathcal Q</math> in the associated projective space <math>\mathcal P,</math> as the set of the points <math>\langle\vec x\rangle \in {\mathcal P}</math> such that <math>q(\vec x)=0</math>. That is, : <math>\mathcal Q=\{\langle\vec x\rangle \in {\mathcal P} \mid q(\vec x)=0\}.</math> '''Examples in <math> P_2(K)</math>.:'''<br /> '''(E1):''' For <math>\;q(\vec x)=x_1x_2-x^2_3\;</math> one obtains a [[Conic section|conic]].<br /> '''(E2):''' For <math>\;q(\vec x)=x_1x_2\;</math> one obtains the pair of lines with the equations <math>x_1=0</math> and <math>x_2=0</math>, respectively. They intersect at point <math>\langle(0,0,1)^\text{T}\rangle</math>; For the considerations below it is assumed that <math>\mathcal Q\ne \emptyset</math>. === Polar space === For point <math>P=\langle\vec p\rangle \in {\mathcal P}</math> the set : <math>P^\perp:=\{\langle\vec x\rangle\in {\mathcal P} \mid f(\vec p,\vec x)=0\}</math> is called [[Duality (mathematics)#Polarities of general projective spaces|'''polar space''']] of <math>P</math> (with respect to <math>q</math>). If <math>\;f(\vec p,\vec x)=0\;</math> for all <math>\vec x </math>, one obtains <math>P^\perp=\mathcal P</math>. If <math>\;f(\vec p,\vec x)\ne 0\;</math> for at least one <math>\vec x </math>, the equation <math>\;f(\vec p,\vec x)=0\;</math>is a non trivial linear equation which defines a hyperplane. Hence :<math>P^\perp</math> is either a [[hyperplane]] or <math>{\mathcal P}</math>. === Intersection with a line === For the intersection of an arbitrary line <math>g</math> with a quadric <math> \mathcal Q</math>, the following cases may occur: :a) <math>g\cap \mathcal Q=\emptyset\;</math> and <math>g</math> is called ''exterior line'' :b) <math> g \subset \mathcal Q\; </math> and <math>g</math> is called a ''line in the quadric'' :c) <math>|g\cap \mathcal Q|=1\; </math> and <math>g</math> is called ''tangent line'' :d) <math>|g\cap \mathcal Q|=2\; </math> and <math>g</math> is called ''secant line''. '''Proof:''' Let <math>g</math> be a line, which intersects <math>\mathcal Q </math> at point <math>\;U=\langle\vec u\rangle\;</math> and <math> \;V= \langle\vec v\rangle\;</math> is a second point on <math>g</math>. From <math>\;q(\vec u)=0\;</math> one obtains<br /> <math>q(x\vec u+\vec v)=q(x\vec u)+q(\vec v)+f(x\vec u,\vec v)=q(\vec v)+xf(\vec u,\vec v)\; .</math><br /> I) In case of <math>g\subset U^\perp</math> the equation <math>f(\vec u,\vec v)=0</math> holds and it is <math>\; q(x\vec u+\vec v)=q(\vec v)\; </math> for any <math>x\in K</math>. Hence either <math>\;q(x\vec u+\vec v)=0\;</math> for ''any'' <math>x\in K</math> or <math>\;q(x\vec u+\vec v)\ne 0\;</math> for ''any'' <math>x\in K</math>, which proves b) and b').<br /> II) In case of <math>g\not\subset U^\perp</math> one obtains <math>f(\vec u,\vec v)\ne 0</math> and the equation <math>\;q(x\vec u+\vec v)=q(\vec v)+xf(\vec u,\vec v)= 0\;</math> has exactly one solution <math>x</math>. Hence: <math>|g\cap \mathcal Q|=2</math>, which proves c). Additionally the proof shows: :A line <math>g</math> through a point <math>P\in \mathcal Q</math> is a ''tangent'' line if and only if <math>g\subset P^\perp</math>. === ''f''-radical, ''q''-radical === In the classical cases <math>K=\R</math> or <math> \C</math> there exists only one radical, because of <math>\operatorname{char}K\ne2</math> and <math>f</math> and <math>q</math> are closely connected. In case of <math>\operatorname{char}K=2</math> the quadric <math>\mathcal Q</math> is not determined by <math>f</math> (see above) and so one has to deal with two radicals: :a) <math>\mathcal R:=\{P\in{\mathcal P} \mid P^\perp=\mathcal P\}</math> is a projective subspace. <math>\mathcal R</math> is called '''''f''-radical''' of quadric <math>\mathcal Q</math>. :b) <math>\mathcal S:=\mathcal R\cap\mathcal Q</math> is called '''singular radical''' or ''<math>q</math>-radical'' of <math>\mathcal Q</math>. :c) In case of <math>\operatorname{char}K\ne2</math> one has <math>\mathcal R=\mathcal S</math>. A quadric is called '''non-degenerate''' if <math>\mathcal S=\emptyset</math>. '''Examples in <math> P_2(K)</math>''' (see above):<br /> '''(E1):''' For <math>\;q(\vec x)=x_1x_2-x^2_3\;</math> (conic) the bilinear form is <math>f(\vec x,\vec y)=x_1y_2+x_2y_1-2x_3y_3\; . </math><br /> In case of <math>\operatorname{char}K\ne2</math> the polar spaces are never <math>\mathcal P</math>. Hence <math>\mathcal R=\mathcal S=\empty</math>.<br /> In case of <math>\operatorname{char}K=2</math> the bilinear form is reduced to <math>f(\vec x,\vec y)=x_1y_2+x_2y_1\; </math> and <math>\mathcal R=\langle(0,0,1)^\text{T}\rangle\notin \mathcal Q</math>. Hence <math>\mathcal R\ne \mathcal S=\empty \; .</math> In this case the ''f''-radical is the common point of all tangents, the so called ''knot''.<br /> In both cases <math> S=\empty</math> and the quadric (conic) ist ''non-degenerate''.<br /> '''(E2):''' For <math>\;q(\vec x)=x_1x_2\;</math> (pair of lines) the bilinear form is <math>f(\vec x,\vec y)=x_1y_2+x_2y_1\; </math> and <math>\mathcal R=\langle(0,0,1)^\text{T}\rangle=\mathcal S\; ,</math> the intersection point. <br /> In this example the quadric is ''degenerate''. === Symmetries === A quadric is a rather homogeneous object: :For any point <math>P\notin \mathcal Q\cup {\mathcal R}\;</math> there exists an [[Involution (mathematics)|involutorial]] central [[collineation]] <math>\sigma_P</math> with center <math>P</math> and <math>\sigma_P(\mathcal Q)=\mathcal Q</math>. '''Proof:''' Due to <math>P\notin \mathcal Q\cup {\mathcal R}</math> the polar space <math>P^\perp</math> is a hyperplane. The linear mapping : <math>\varphi: \vec x \rightarrow \vec x-\frac{f(\vec p,\vec x)}{q(\vec p)}\vec p</math> induces an ''involutorial central collineation'' <math>\sigma_P</math> with axis <math>P^\perp</math> and centre <math>P</math> which leaves <math>\mathcal Q</math> invariant.<br /> In the case of <math>\operatorname{char}K\ne2</math>, the mapping <math>\varphi</math> produces the [[Reflection (mathematics)|familiar shape]] <math>\; \varphi: \vec x \rightarrow \vec x-2\frac{f(\vec p,\vec x)}{f(\vec p,\vec p)}\vec p\; </math> with <math>\; \varphi(\vec p)=-\vec p</math> and <math>\; \varphi(\vec x)=\vec x\; </math> for any <math>\langle\vec x\rangle \in P^\perp</math>. '''Remark:''' :a) An exterior line, a tangent line or a secant line is mapped by the involution <math>\sigma_P</math> on an exterior, tangent and secant line, respectively. :b) <math>{\mathcal R}</math> is pointwise fixed by <math>\sigma_P</math>. ===''q''-subspaces and index of a quadric === A subspace <math>\;\mathcal U\;</math> of <math>P_n(K)</math> is called <math>q</math>-subspace if <math>\;\mathcal U\subset\mathcal Q\;</math> For example: points on a sphere or [[ruled surface|lines on a hyperboloid]] (s. below). :Any two ''maximal'' <math>q</math>-subspaces have the same dimension <math>m</math>.<ref>Beutelpacher/Rosenbaum, p.139</ref> Let be <math>m</math> the dimension of the maximal <math>q</math>-subspaces of <math>\mathcal Q</math> then :The integer <math>\;i:=m+1\;</math> is called '''index''' of <math>\mathcal Q</math>. '''Theorem: (BUEKENHOUT)<ref>F. Buekenhout: ''Ensembles Quadratiques des Espace Projective'', Math. Teitschr. 110 (1969), p. 306-318.</ref>''' :For the index <math>i</math> of a non-degenerate quadric <math>\mathcal Q</math> in <math>P_n(K)</math> the following is true: ::<math>i\le \frac{n+1}{2}</math>. Let be <math>\mathcal Q</math> a non-degenerate quadric in <math> P_n(K), n\ge 2</math>, and <math>i</math> its index.<br /> : In case of <math>i=1</math> quadric <math>\mathcal Q</math> is called ''sphere'' (or [[oval (projective plane)|oval]] conic if <math>n=2</math>). : In case of <math>i=2</math> quadric <math>\mathcal Q</math> is called ''hyperboloid'' (of one sheet). '''Examples:''' :a) Quadric <math>\mathcal Q</math> in <math>P_2(K)</math> with form <math>\;q(\vec x)=x_1x_2-x^2_3\;</math> is non-degenerate with index 1. :b) If polynomial <math>\;p(\xi)=\xi^2+a_0\xi+b_0\;</math> is [[Irreducible polynomial|irreducible]] over <math>K</math> the quadratic form <math>\;q(\vec x)=x^2_1+a_0x_1x_2+b_0x^2_2-x_3x_4\;</math> gives rise to a non-degenerate quadric <math>\mathcal Q</math> in <math>P_3(K)</math> of index 1 (sphere). For example: <math>\;p(\xi)=\xi^2+1\;</math> is irreducible over <math>\R</math> (but not over <math>\C</math> !). :c) In <math>P_3(K)</math> the quadratic form <math>\;q(\vec x)=x_1x_2+x_3x_4\;</math> generates a ''hyperboloid''. === Generalization of quadrics: quadratic sets === It is not reasonable to formally extend the definition of quadrics to spaces over genuine skew fields (division rings). Because one would obtain secants bearing more than 2 points of the quadric which is totally different from ''usual'' quadrics.<ref>R. [[Rafael Artzy|Artzy]]: ''The Conic <math>y=x^2</math> in Moufang Planes'', Aequat.Mathem. 6 (1971), p. 31-35</ref><ref>E. Berz: ''Kegelschnitte in Desarguesschen Ebenen'', Math. Zeitschr. 78 (1962), p. 55-8</ref><ref>external link E. Hartmann: ''Planar Circle Geometries'', p. 123</ref> The reason is the following statement. :A [[division ring]] <math>K</math> is [[commutative ring|commutative]] if and only if any [[quadratic equation|equation]] <math>x^2+ax+b=0, \ a,b \in K</math>, has at most two solutions. There are ''generalizations'' of quadrics: [[quadratic set]]s.<ref>Beutelspacher/Rosenbaum: p. 135</ref> A quadratic set is a set of points of a projective space with the same geometric properties as a quadric: every line intersects a quadratic set in at most two points or is contained in the set.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Quadric
(section)
Add topic