Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Power-to-weight ratio
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Electrochemical (galvanic) and electrostatic cell systems=== ====(Closed cell) batteries==== All electrochemical cell batteries deliver a changing voltage as their chemistry changes from "charged" to "discharged". A nominal output voltage and a cutoff voltage are typically specified for a battery by its manufacturer. The output voltage falls to the cutoff voltage when the battery becomes "discharged". The nominal output voltage is always less than the open-circuit voltage produced when the battery is "charged". The temperature of a battery can affect the power it can deliver, where lower temperatures reduce power. Total energy delivered from a single charge cycle is affected by both the battery temperature and the power it delivers. If the temperature lowers or the power demand increases, the total energy delivered at the point of "discharge" is also reduced. Battery discharge profiles are often described in terms of a factor of [[Battery (electricity)#Capacity and discharging|battery capacity]]. For example, a battery with a nominal capacity quoted in ampere-hours (Ah) at a C/10 rated discharge current (derived in amperes) may safely provide a higher discharge current – and therefore higher power-to-weight ratio – but only with a lower energy capacity. Power-to-weight ratio for batteries is therefore less meaningful without reference to corresponding energy-to-weight ratio and cell temperature. This relationship is known as [[Peukert's law]].<ref>{{cite journal|last=Peukert|first=W.|title=Über die Abhängigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren|journal=Elektrotechnische Zeitschrift|volume=20|year=1897}}</ref> {| class="wikitable sortable mw-collapsible mw-collapsed" |- ! [[Battery (electricity)|Battery]] type ! [[Voltage|Volts]] ! {{Abbr|[[Temperature|Temp.]]|Temperature}} ! data-sort-type="number"|Energy-to-weight ratio ! data-sort-type="number"|Power-to-weight ratio |- | [[Energizer]] 675 [[Mercury (element)|Mercury]] Free [[zinc–air battery]]<ref>{{cite web|url=http://data.energizer.com/PDFs/675.pdf|title=Product Datasheet – Energizer 675 ZnAir|publisher=[[Energizer Holdings]]|access-date=2010-09-20|date=2010-02-15|archive-date=2011-07-10|archive-url=https://web.archive.org/web/20110710193321/http://data.energizer.com/PDFs/675.pdf|url-status=dead}}</ref> | 1.4 V | 21 °C | 1,645 kJ/kg to 0.9 V <!-- 1.4V over 625 ohn load for 11 days, 12 hours, 47 minutes and 8.57 seconds, i.e. 620mAh ---> | 1.65 W/kg 2.24 mA |- | [[GE Transportation|GE]] Durathon NaMx A2 [[uninterruptible power supply|UPS]] [[molten-salt battery]]<ref>{{cite web|url=http://www.personal.psu.edu/klm5709/plugin-GE-NaMx-Batteries-ss.pdf|title=GE Durathon Batteries – NaMx Battery System for Telecom Applications|publisher=[[Pennsylvania State University]]|access-date=2011-11-24|date=2010-09-17|archive-url=https://web.archive.org/web/20130709000703/http://www.personal.psu.edu/klm5709/plugin-GE-NaMx-Batteries-ss.pdf|archive-date=2013-07-09|url-status=dead}}</ref> | 54.2 V | -40–65 °C | 342 kJ/kg to 37.8 V | 15.8 W/kg C/6 (76 A) <!-- 456Ah at 6-hour discharge rate --> |- |rowspan="2"| [[Panasonic]] R03 AAA [[Zinc–carbon battery]]<ref>{{cite web|url=http://industrial.panasonic.com/www-data/pdf2/AAE4000/AAE4000CE16.pdf|title=Zinc Carbon Batteries|publisher=[[Panasonic]]|access-date=February 5, 2010|date=August 2009|archive-url=https://web.archive.org/web/20111002154219/http://industrial.panasonic.com/www-data/pdf2/AAE4000/AAE4000CE16.pdf|archive-date=October 2, 2011|url-status=dead}}</ref><ref>{{cite web|url=http://products.panasonic-industrial.com/downloads/en/R03.pdf|publisher=[[Panasonic]]|title=Specification for Zinc-Carbon Dry Battery R03(NB)|date=June 25, 1998 }} {{Dead link|date=December 2018 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> |rowspan="2"| 1.5 V |rowspan="2"| 20±2 °C | 47 kJ/kg 20 mA to 0.9 V <!-- 1.5V over 75 ohm load for 4 hours --> | 3.3 W/kg 20 mA |- | 88 kJ/kg 150 mA to 0.9 V <!-- 1.5V over 10 ohm load for 1 hour --> | 24 W/kg 150 mA |- |rowspan="2"| [[Eagle-Picher]] SAR-10081 60 Ah 22-cell [[nickel–hydrogen battery]]<ref>{{cite web|url=http://www.die.unipd.it/personale/doc/Benato_Roberto/didattica/corsi/IMPIANTI_ELETTRICI_DI_BORDO_PER_IAS/2_zona_di_transizione/BATTERIE/Batt_SPV.pdf |title=Nickel Hydrogen (NiH<sub>2</sub>) Batteries – Single Pressure Vessel |author-link=Eagle-Picher |author=EaglePicher Technologies, LLC |publisher=[[University of Padua]] |date=February 6, 2003 |access-date=February 5, 2010 }} {{dead link|date=June 2016|bot=medic}}{{cbignore|bot=medic}}</ref> |rowspan="2"| 27.7 V |rowspan="2"| 10 °C | 192 kJ/kg C/2 to 22 V <!-- 30A for 2 hours 20 minutes = 70 Ah; 53.4 Wh/kg; mass = 36.3 kg --> | 23 W/kg C/2 |- | 165 kJ/kg C/1 to 22 V <!-- 60A for 1 hour = 60 Ah; 45.8 Wh/kg; mass = 36.3 kg; standard discharge --> | 46 W/kg C/1 |- | [[ClaytonPower]] 400 Ah [[lithium-ion battery]]<ref>{{cite web|url=http://www.claytonpower.com/products/lithium-ion-battery/|title=Lithium Ion Battery Packs|access-date=2010-10-05|year=2010|author=Clayton Power|publisher=Clayton Power|url-status=dead|archive-url=https://web.archive.org/web/20101022021000/http://www.claytonpower.com/products/lithium-ion-battery/|archive-date=2010-10-22}}</ref><ref name="claytonpower">{{cite web|url=http://www.claytonpower.com/products/complete-power-systems-24v-230v/|title=Complete Power Systems – 24VDC/230VAC|access-date=2010-10-05|year=2010|author=Clayton Power|publisher=Clayton Power|url-status=dead|archive-url=https://web.archive.org/web/20110211002321/http://www.claytonpower.com/products/complete-power-systems-24v-230v/|archive-date=2011-02-11}}</ref> | 12 V | | 617 kJ/kg <!-- mass = 56 kg, size = 348 × 469 × 352mm i.e. vol = 57.5 L--> | 85.7 W/kg C/1 (175 A) |- |rowspan="3"| [[Energizer]] 522 Prismatic [[Zinc|Zn]]–[[Manganese dioxide|MnO<sub>2</sub>]] [[alkaline battery]]<ref>{{cite web|url=http://data.energizer.com/PDFs/522.pdf|title=Product Datasheet – Energizer 522 9V|access-date=February 4, 2010|publisher=[[Energizer Holdings]]|archive-date=July 10, 2011|archive-url=https://web.archive.org/web/20110710192917/http://data.energizer.com/PDFs/522.pdf|url-status=dead}}</ref> |rowspan="3"| 9 V |rowspan="3"| 21 °C | 444 kJ/kg 25 mA to 4.8 V | 4.9 W/kg 25 mA |- | 340 kJ/kg 100 mA to 4.8 V | 19.7 W/kg 100 mA |- | 221 kJ/kg 500 mA to 4.8 V | 99 W/kg 500 mA |- |rowspan="3"| [[Panasonic]] HHR900D 9.25 Ah [[nickel–metal hydride battery]]<ref>{{cite web|url=http://www.panasonic.com/industrial/includes/pdf/Panasonic_NiMH_HHR900D.pdf|title=Nickel Metal Hydride Batteries – Individual Data Sheet – HHR900D|publisher=[[Panasonic]]|access-date=February 5, 2010|date=August 2005|archive-date=September 14, 2013|archive-url=https://web.archive.org/web/20130914030805/http://www.panasonic.com/industrial/includes/pdf/Panasonic_NiMH_HHR900D.pdf|url-status=live}}</ref> |rowspan="3"| 1.2 V |rowspan="3"| 20 °C |rowspan="3"| 209.65 kJ/kg to 0.7 V | 11.7 W/kg C/5 |- | 58.2 W/kg C/1 |- | 116 W/kg 2C |- | [[University of Rhode Island|URI]] 1418 Ah replaceable anode [[aluminium–air battery]] model<ref>{{Cite journal | doi = 10.1016/S0378-7753(02)00370-1 | issn = 0378-7753 | volume = 112 | issue = 1 | pages = 162–173 |author1=Yang, Shaohua |author2=Harold Knickle |name-list-style=amp | title = Design and analysis of aluminum/air battery system for electric vehicles | journal = Journal of Power Sources | year = 2002 |bibcode = 2002JPS...112..162Y }}</ref><ref>{{Cite journal | doi = 10.1016/j.jpowsour.2003.09.058 | issn = 0378-7753 | volume = 128 | issue = 2 | pages = 331–342 | last1 = Zhang | first1=Xin | last2 = Yang | first2=Shao Hua | last3 = Knickle | first3=Harold | title = Novel operation and control of an electric vehicle aluminum/air battery system | journal = Journal of Power Sources | year = 2004 |bibcode = 2004JPS...128..331Z }}</ref> | 244.8 V | 60 °C | 4680 kJ/kg <!-- 1300 Wh/kg --> | 130.3 W/kg (142 A) <!-- peak power output 34.8 kW from 136 cells split between two modules combined size 371L and 267 kg --> |- | rowspan="2"| [[LG Chemical]]/[[Compact Power|CPI]] E2 6 Ah LiMn<sub>2</sub>O<sub>4</sub> [[Lithium-ion polymer battery]]<ref>{{cite web|url=http://www.lgchem.com/upload/02_Ko/e2%20cell%20specsheet(6ah).pdf|title=E2 General Information|page=1|publisher=Lucky Goldstar Chemical Ltd.|access-date=2010-10-01|date=2005-03-24|author=LG Chem.|archive-url=https://web.archive.org/web/20151016214030/http://www.lgchem.com/upload/02_Ko/e2%20cell%20specsheet(6ah).pdf|archive-date=2015-10-16|url-status=dead}}</ref><ref>{{cite web|url=http://www.compactpower.com/Documents/MicrosoftWord-LG_Chem_pressrelease_finalon20080110.pdf|access-date=2010-10-01|date=2009-01-12|title=Press Release – LG Chem Battery Cells to Power Chevrolet Volt|publisher=Lucky Goldstar Chemical Ltd., CompactPower division|page=3|author=LG Chem.|url-status=dead|archive-url=https://web.archive.org/web/20120428153054/http://www.compactpower.com/Documents/MicrosoftWord-LG_Chem_pressrelease_finalon20080110.pdf|archive-date=2012-04-28}}</ref> | rowspan="2"| 3.8 V | rowspan="2"| 25 °C | 530.1 kJ/kg C/2 to 3.0 V | 71.25 W/kg |- | 513 kJ/kg 1C to 3.0 V | 142.5 W/kg |- | rowspan="3" | [[Saft Groupe S.A.|Saft]] 45E Fe Super-Phosphate [[Lithium iron phosphate battery]]<ref>{{cite web|url=http://www.saftbatteries.com/doc/Documents/defence/Cube769/VL45EFe.e3741a09-74fd-4df4-8687-12997f445ef5.pdf|title=Rechargeable LiFePO4 lithium-ion battery Super-Phosphate VL 45E Fe Very High Energy cell|access-date=2010-10-01|date=June 2010|publisher=SAFT Batteries|author=JCI-SAFT|url-status=dead|archive-url=https://web.archive.org/web/20101122071429/http://www.saftbatteries.com/doc/Documents/defence/Cube769/VL45EFe.e3741a09-74fd-4df4-8687-12997f445ef5.pdf|archive-date=2010-11-22}}</ref> | rowspan="3" | 3.3 V | rowspan="3" | 25 °C | 581 kJ/kg C to 2.5 V | 161 W/kg |- | 560 kJ/kg 1.14 C to 2.0 V | 183 W/kg |- | 0.73 kJ/kg 2.27 C to 1.5 V | 367 W/kg |- |rowspan="2"| [[Energizer]] CH35 C 1.8 Ah [[nickel–cadmium battery]]<ref>{{cite web|url=http://data.energizer.com/PDFs/CH35.pdf|title=Product Datasheet – Energizer CH35 C|access-date=February 4, 2010|publisher=[[Energizer Holdings]]|archive-date=July 10, 2011|archive-url=https://web.archive.org/web/20110710192938/http://data.energizer.com/PDFs/CH35.pdf|url-status=dead}}</ref> |rowspan="2" | 1.2 V |rowspan="2" | 21 °C | 152 kJ/kg C/10 to 1 V | 4 W/kg C/10 |- | 147.1 kJ/kg 5C to 1 V | 200 W/kg 5 C |- |rowspan="3"| Firefly Energy Oasis FF12D1-G31 6-cell 105Ah [[VRLA battery|VRLA]] [[Lead–acid battery|battery]]<ref name="firefly_oasis">{{cite web|url=http://www.fireflyenergy.com/images/stories/pdfs/Group%2031%20Spec%20Sheet%20REV%20-%20110909.pdf|title=Microcell Technology AGM Deep Cycle Group 31 Battery|access-date=February 4, 2010|year=2009|publisher=FireFly Energy|archive-date=April 8, 2020|archive-url=https://web.archive.org/web/20200408124935/http://www.fireflyenergy.com/images/stories/pdfs/Group%2031%20Spec%20Sheet%20REV%20-%20110909.pdf|url-status=dead}}</ref> | rowspan="3"| 12 V | 25 °C | 142 kJ/kg C/10 to 7.2 V <!-- 10.5A for 10 hours = 105Ah --> | 4 W/kg C/10 |- | -1 8 °C | 7 kJ/kg [[Car battery#Terms and ratings|CCA]] to 7.2 V <!-- 625A for 30s = 5.2Ah --> | 234 W/kg [[Car battery#Terms and ratings|CCA]] (625 A) |- | 0 °C | 9 kJ/kg [[Car battery#Terms and ratings|CA]] to 7.2 V <!-- 800A for 30s = 6.7Ah --> | 300 W/kg [[Car battery#Terms and ratings|CA]] (800 A) |- |rowspan="4"| [[Panasonic]] CGA103450A 1.95 Ah LiCoO<sub>2</sub> [[Lithium-ion battery]]<ref name="panasonicliion">{{cite web|url=http://www.panasonic.com/industrial/battery/oem/images/pdf/Panasonic_LiIon_CGA103450A.pdf |title=Lithium Ion Batteries – Individual Data Sheet – CGA103450A |publisher=[[Panasonic]] |access-date=February 4, 2010 |date=January 2007 |url-status=dead |archive-url=https://web.archive.org/web/20090327125952/http://www.panasonic.com/industrial/battery/oem/images/pdf/Panasonic_LiIon_CGA103450A.pdf |archive-date=March 27, 2009 }}</ref> |rowspan="4"| 3.7 V | 20 °C <!-- 370 mA for 5 hours 16 minutes 13 seconds = 1950 mAh; mass = 39g; standard discharge --> | 666 kJ/kg C/5.3 to 2.75 V | 35 W/kg C/5.3 |- | 0 °C <!-- 1854 mA for 1 hour = 1854mAh; mass = 39g --> | 633 kJ/kg C/1 to 2.75 V | 176 W/kg C/1 |- | 20 °C <!-- 1918 mA for 1 hour = 1918 mAh; mass = 39g--> | 655 kJ/kg C/1 to 2.75 V | 182 W/kg C/1 |- | 20 °C <!-- 3754 mA for 30 minutes = 1877 mAh; mass = 39g --> | 641 kJ/kg 2C to 2.75 V | 356 W/kg 2C |- | Electric Fuel Battery Corp. [[UUV]] 120 Ah [[zinc–air fuel cell]]<ref>{{cite web|url=http://www.efbpower.com/downloads/UAVbro2.pdf|title=Mission Extended – Advanced Zinc-Air Battery Technology|publisher=Electric Fuel Battery Corporation|access-date=2010-09-15|date=2003-03-30|archive-date=2011-07-10|archive-url=https://web.archive.org/web/20110710172517/http://www.efbpower.com/downloads/UAVbro2.pdf|url-status=live}}</ref> | | | 630 kJ/kg | 500 W/kg C/1 |- | rowspan=2 | Sion Power 2.5 Ah [[lithium–sulfur battery]]<ref>{{cite web|url=http://sionpower.com/pdf/articles/LIS%20Spec%20Sheet%2010-3-08.pdf|title=Lithium Sulfur Rechargeable Battery Data Sheet|publisher=Sion Power|access-date=11 September 2010|date=October 3, 2008|archive-url=https://web.archive.org/web/20141227024756/http://www.sionpower.com/pdf/articles/LIS%20Spec%20Sheet%2010-3-08.pdf|archive-date=27 December 2014|url-status=dead|df=dmy-all}}</ref> | rowspan=2 | 2.15 V | rowspan=2 | 25 °C | 1260 kJ/kg <!-- 350 Wh/kg nominal at 2.5Ah/5h = 500mA --> | 70 W/kg C/5 <!-- 350 Wh/5h per kg --> |- | 1209 kJ/kg <!-- mass ~16g, nominal capacity 2.5Ah at nominal voltage 2.15V --> | 672 W/kg 2C <!-- mass ~16g, C = 2.5A so 2C = 5A --> |- | rowspan=3 | [[Stanford University|Stanford]] [[Prussian blue|Prussian Blue]] [[Charge cycle|durable]] [[Potassium-ion battery]]<ref>{{Cite journal | doi = 10.1038/ncomms4007 | volume = 5 | last = Pasta | first = Mauro |author2=Colin D. Wessells |author3=Nian Liu |author4=Johanna Nelson |author5=Matthew T. McDowell |author6=Robert A. Huggins |author7=Michael F. Toney |author8=Yi Cui | title = Full open-framework batteries for stationary energy storage | journal = Nature Communications | date = 2014-01-06 |bibcode = 2014NatCo...5.3007P | pmid=24389854 | page=3007| doi-access=free}}</ref> | rowspan=3|1.35 V | rowspan=3|room | 54 kJ/kg | 13.8 W/kg C/1 |- | 50 kJ/kg <!-- 92.9% of maximum discharge capacity was retained --> | 138 W/kg 10C |- | 39 kJ/kg <!-- 73.3% of maximum discharge capacity was retained --> | 693 W/kg 50C |- | [[Hitachi Maxell|Maxell]] / [[GS Yuasa|Yuasa]] / [[National Institute of Advanced Industrial Science and Technology|AIST]] [[nickel–metal hydride]] lab prototype<ref>{{cite journal|title=Improvement of Nickel Metal Hydride Battery with Non-foam Nickel Electrode for Hybrid Electric Vehicles Applications|last1=Fukunaga|first1=Hiroshi|last2=Kishimi|first2=Mitsuhiro|last3=Matsumoto|first3=Nobuaki|last4=Tanaka|first4=Toshiki|last5=Kishimoto|first5=Tomonori|last6=Ozaki|first6=Tetsuya|last7=Sakai|first7=Tetsuo|journal=Electrochemistry|volume=75|issue=5|pages=385–393|year=2006|location=Japan|issn=1344-3542|doi=10.5796/electrochemistry.74.385|doi-access=free}}</ref> | | 45 °C | | 980 W/kg |- | [[Toshiba]] SCiB cell 4.2 Ah [[Lithium–titanate battery|Li<sub>2</sub>TiO<sub>3</sub>]] [[lithium-ion battery]]<ref>{{cite web|url=http://www.scib.jp/en/product/detail.htm|title=Rechargeable Battery SCiB – Description|publisher=[[Toshiba|Toshiba Corporation]]|access-date=2010-09-11|url-status=dead|archive-url=https://web.archive.org/web/20100827142749/http://www.scib.jp/en/product/detail.htm|archive-date=2010-08-27}}</ref><ref>{{cite web|url=http://www.scib.jp/en/product/spec.htm|title=Rechargeable Battery SCiB – Specifications|publisher=[[Toshiba|Toshiba Corporation]]|access-date=2010-09-11|url-status=dead|archive-url=https://web.archive.org/web/20100827142848/http://www.scib.jp/en/product/spec.htm|archive-date=2010-08-27}}</ref> | 2.4 V | 25 °C | 242 kJ/kg <!-- mass 150g, 4.2Ah*2.4V --> | 67.2 W/kg C/1 <!-- mass 150g, C/1 = 4.2A --> |- |rowspan="2"| Ionix Power Systems LiMn<sub>2</sub>O<sub>4</sub> [[lithium-ion battery]] lab model<ref>{{cite web|url=http://www.ionixpower.com/lithium_ion_battery.htm|title=Lithium Ion Battery Research|publisher=Ionix Power Systems|access-date=February 4, 2010|archive-url=https://web.archive.org/web/20170315175717/http://www.ionixpower.com/lithium_ion_battery.htm/|archive-date=March 15, 2017|url-status=dead}}</ref> | | lab | 270 kJ/kg <!-- 75 Wh/kg --> | 1700 W/kg |- | | lab | 29 kJ/kg <!-- 8.1 Wh/kg --> | 4900 W/kg |- |rowspan="5"| [[A123 Systems]] 26650 Cell 2.3 Ah [[Lithium iron phosphate battery|LiFePO<sub>4</sub>]] [[lithium-ion battery]]<ref>{{cite web|url=http://www.a123systems.com/a123/products|archive-url=https://web.archive.org/web/20090924185205/http://www.a123systems.com/a123/products|url-status=dead|archive-date=September 24, 2009|title=A123Systems Products|publisher=[[A123 Systems]]|access-date=February 4, 2010}}</ref><ref>{{cite web|url=http://www.a123systems.com/cms/product/pdf/1/_ANR26650M1A.pdf |title=High Power Lithium Ion ANR26650M1A – Datasheet |publisher=[[A123 Systems]] |access-date=February 4, 2010 |url-status=dead |archive-url=https://web.archive.org/web/20100601144233/http://www.a123systems.com/cms/product/pdf/1/_ANR26650M1A.pdf |archive-date=June 1, 2010 }}</ref> |rowspan="5"| 3.3 V | -20 °C<!-- 2.3A for 53 minutes = (89%) 2Ah nominal capacity; mass = 70g; nominal continuous discharge --> | 347 kJ/kg C/1 to 2 V | 108 W/kg C/1 |- | 0 °C<!-- 2.3A for 57 minutes = (95%) 2.2Ah nominal capacity; mass = 70g; nominal continuous discharge --> | 371 kJ/kg C/1 to 2 V | 108 W/kg C/1 |- | 25 °C<!-- 2.3A for 1 hour = 2.3Ah nominal capacity; mass = 70g; nominal continuous discharge --> | 390 kJ/kg C/1 to 2 V | 108 W/kg C/1 |- | 25 °C<!-- 70A for 1 minute 58 seconds = 2.3Ah nominal capacity; mass = 70g; max continuous discharge --> | 390 kJ/kg 27C to 2 V | 3300 W/kg 27C |- | 25 °C<!-- 120A for short burst 10s = 333mAh burst capacity; mass = 70g; max burst --> | 57 kJ/kg 32C to 2 V | 5657 W/kg 32C |- | rowspan="6"| [[Saft Groupe S.A.|Saft]] VL 6 Ah [[lithium-ion battery]]<ref>{{cite web|url=http://www.saftbatteries.com/doc/Documents/defence/Cube769/VL6A_data_sheet.9ea09188-84ad-4c54-989b-a2206dc28da2.pdf|title=Rechargeable lithium-ion battery VL 6A Very High Power cell|access-date=2010-10-02|date=June 2009|publisher=SAFT Batteries|author=JCI-Saft|url-status=dead|archive-url=https://web.archive.org/web/20110718205602/http://www.saftbatteries.com/doc/Documents/defence/Cube769/VL6A_data_sheet.9ea09188-84ad-4c54-989b-a2206dc28da2.pdf|archive-date=2011-07-18}}</ref> | rowspan="6" | 3.65 V | rowspan="2" | -20 °C | 154 kJ/kg 30C to 2.5 V <!-- 5.2 Ah from graph, but voltage drops quickly to around 2.71V, rises to around 3.1 then drops to 2.5V. Assume 2.8V nominal. --> | 41.4 W/kg 30C (180 A) <!-- Assume 2.71V here because drop is early in profile, rise to around 3.1V then drop to 2.5V --> |- | 182 kJ/kg 1C to 2.5 V <!-- 5.2 Ah from graph. Assume 3.3V nominal. --> | 67.4 W/kg 1C <!-- Assume 3.8V here --> |- | rowspan="4" | 25 °C | 232 kJ/kg 1C to 2.5 V <!-- 6Ah nominal capacity; mass = 0.34 kg; nominal continuous discharge for 6 hours --> | 64.4 W/kg 1C |- | 233 kJ/kg 58.3C to 2.5 V <!-- 350A at 3.65V delivering 79.2 kJ/22Wh in 62s; mass = 0.34 kg; max continuous --> | 3289 W/kg 58.3C (350 A) <!-- ((3.65V - (350A * 1.3e-3ohm)) * 350A) / 0.34kg --> |- | 34 kJ/kg 267C to 2.5 V <!-- 1.6kA for short burst 2s = 3.24Wh; mass = 0.34 kg; pulse --> | 7388 W/kg 267C (1.6 kA) <!-- ((3.65V - (1600A * 1.3e-3ohm)) * 1600A) / 0.34kg --> |- | 4.29 kJ/kg 333C to 2.5 V <!-- 2kA for short burst 200ms = 0.406Wh; mass = 0.34 kg; pulse --> | 9706 W/kg 333C (2 kA) <!-- ((3.65V - (2000A * 1.0e-3ohm)) * 2000A)/0.34kg --> |} ====Electrostatic, electrolytic and electrochemical capacitors==== [[Capacitor]]s store electric charge onto two electrodes separated by an electric field semi-insulating ([[dielectric]]) medium. Electrostatic capacitors feature planar electrodes onto which electric charge accumulates. [[Electrolytic capacitor]]s use a liquid electrolyte as one of the electrodes and the [[Double layer (interfacial)|electric double layer effect]] upon the surface of the dielectric-electrolyte boundary to increase the amount of charge stored per unit volume. [[Electric double-layer capacitor]]s extend both electrodes with a [[Nanopore|nanoporous]] material such as [[activated carbon]] to significantly increase the surface area upon which electric charge can accumulate, reducing the dielectric medium to nanopores and a very thin high [[permittivity]] separator. While capacitors tend not to be as temperature sensitive as batteries, they are significantly capacity constrained and without the strength of chemical bonds suffer from self-discharge. Power-to-weight ratio of capacitors is usually higher than batteries because charge transport units within the cell are smaller (electrons rather than ions), however energy-to-weight ratio is conversely usually lower. {| class="wikitable sortable" |- ! [[Capacitor]] type ! data-sort-type="number"|[[Capacitance]] ! data-sort-type="number"|[[Voltage]] ! data-sort-type="number"|{{Abbr|[[Temperature|Temp.]]|Temperature}} ! data-sort-type="number"|Energy-to-weight ratio ! data-sort-type="number"|Power-to-weight ratio |- | rowspan=2 | ACT Premlis [[lithium-ion capacitor]]<ref>{{cite web|url=http://www.act.jp/eng/premlis/premlis.htm|archive-url=https://web.archive.org/web/20070515231246/http://www.act.jp/eng/premlis/premlis.htm|url-status=dead|archive-date=May 15, 2007|title=Typical Characteristics of Premlis|publisher=Advanced Capacitor Technologies|access-date=September 9, 2010}}</ref> | rowspan=2 | 2000 [[Farad|F]] | rowspan=2 | 4.0 V | rowspan=2 | 25 °C | 54 kJ/kg to 2.0 V | 44.4 W/kg @ 5 A |- | 31 kJ/kg to 2.0 V | 850 W/kg @ 10 A |- | rowspan=2 | Nesccap [[Electric double-layer capacitor]]<ref>{{cite web|url=http://www.nesscap.com/data_nesscap/spec_sheets/Spec%2009.pdf|title=Nesccap Ultracapacitor Products – EDLC – Prismatic|publisher=Nesscap Co., Ltd.|access-date=September 10, 2010}} {{dead link|date=July 2017 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> | rowspan=2 | 5000 [[Farad|F]] | rowspan=2 | 2.7 V | rowspan=2 | 25 °C | 19.58 kJ/kg to 1.35 V | 5.44 W/kg C/1 (1.875 A) <!-- mass 930g, rated energy capacity 0.5*5000*2.7^2 = 5.0625 Wh = 18.225 kJ; rated (C/1) current is then 1.875 A --> |- | 5.2 kJ/kg to 1.35 V | 5,200 W/kg<ref>{{cite web|url=http://www.nesscap.com/products_edlc.htm|title=Nesccap Ultracapacitor (EDLC)|publisher=Nesscap Co., Ltd.|access-date=September 10, 2010|url-status=dead|archive-url=https://web.archive.org/web/20100206022503/http://www.nesscap.com/products_edlc.htm|archive-date=February 6, 2010}}</ref> @ 2,547 A <!-- mass 930g, current pulse for 1 second --> |- | rowspan=2 | [[EEStor]] EESU [[barium titanate]] [[supercapacitor]]<ref name="USPTO-7466536">{{Ref patent | country = US | number = 7466536 | status = patent | title = Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU) | pubdate = 16 December 2008 | gdate = 16 December 2008 | fdate = 13 August 2004 | pridate = 13 August 2004 | invent1 = Weir; Richard Dean | invent2 = Nelson; Carl Walter | assign1 = EEStor, Inc}}</ref> | rowspan=2 |30.693 [[Farad|F]] | rowspan=2 |3500 V | rowspan=2 |85 °C | 1471.98 kJ/kg | 80.35 W/kg C/5 |- | 1471.98 kJ/kg | 8,035 W/kg 20 C |- || [[General Atomics]] 3330CMX2205 [[Capacitor|High Voltage Capacitor]]<ref>{{cite web |url=http://www.ga-esi.com/EP/capacitors/series-CMX-high-energy.php |title=SERIES CMX – Self-Healing Energy Storage Capacitors |url-status=dead |access-date=12 August 2012 |archive-url=https://web.archive.org/web/20130329161712/http://www.ga-esi.com/EP/capacitors/series-CMX-high-energy.php |archive-date=29 March 2013 }}</ref> || 20.5 [[Farad|mF]] || 3300 V || (unknown) | 2.3 kJ/kg | (unknown){{Clarify|date=March 2020|reason=6,800,00 is not a valid number}}<!-- 6,800,00 W/kg @ 100 kA --> |} ====Fuel cell stacks and flow cell batteries==== [[Fuel cell]]s and [[Flow battery|flow cells]], although perhaps using similar chemistry to batteries, do not contain the energy storage medium or [[fuel]]. With a continuous flow of fuel and oxidant, available fuel cells and flow cells continue to convert the energy storage medium into electric energy and waste products. Fuel cells distinctly contain a fixed electrolyte whereas flow cells also require a continuous flow of electrolyte. Flow cells typically have the fuel dissolved in the electrolyte. {| class="wikitable sortable mw-collapsible mw-collapsed" |- ! [[Fuel cell]] type ! data-sort-type="number"|Dry weight ! data-sort-type="number"|Power-to-weight ratio ! Example use |- | Redflow Power+BOS ZB600 10kWh [[Zinc-bromine flow battery|ZBB]]<ref>{{cite web|url=http://www.redflow.com.au/Files/PowerBOSZB600%20-%20Limited%20Warranty.pdf|title=Redflow Power+BOS ZB600 Stand Alone Power System|publisher=Redflow|access-date=September 11, 2010|date=March 2010|url-status=dead|archive-url=https://web.archive.org/web/20100802114428/http://www.redflow.com.au/Files/PowerBOSZB600%20-%20Limited%20Warranty.pdf|archive-date=August 2, 2010}}</ref> | 900 kg | 5.6 W/kg (9.3 W/kg peak) | Rural Grid support |- | rowspan=2|[[Ceramic Fuel Cells]] BlueGen MG 2.0 [[Cogeneration|CHP]] [[Solid oxide fuel cell|SOFC]]<ref>{{cite web|url=http://www.cfcl.com.au/Assets/Files/BlueGen_Brochure(ENG_GER)_Mar-09.pdf|archive-url=https://web.archive.org/web/20091013093245/http://www.cfcl.com.au/Assets/Files/BlueGen_Brochure(ENG_GER)_Mar-09.pdf|url-status=dead|archive-date=October 13, 2009|title=BlueGen Modular Generator – Power + Heat|publisher=Ceramic Fuel Cells Ltd.|access-date=February 4, 2010}}</ref> | rowspan=2|200 kg | 10 W/kg <!-- max power = 2kW elec., 1 kW heat --> | rowspan=2| |- | 15 W/kg [[Cogeneration|CHP]] |- | [[MTU Friedrichshafen]] 240 kW [[Molten carbonate fuel cell|MCFC]] HotModule 2006 | 20,000 kg | 12 W/kg | |- | Smart Fuel Cell Jenny 600S 25 W [[Direct methanol fuel cell|DMFC]]<ref>{{cite web |url=http://www.sfc.com/en/man-portable-jenny.html |title=The Jenny fuel cell by SFC |website=Smart Fuel Cell AG |access-date=March 8, 2020 |archive-url=https://web.archive.org/web/20090213151706/http://www.sfc.com/en/man-portable-jenny.html |archive-date=2009-02-13 }}</ref> | 1.7 kg | 14.7 W/kg | Portable military electronics |- | [[UTC Power]] PureCell 400 kW [[Phosphoric acid fuel cell|PAFC]]<ref>{{cite web|url=http://www.utcpower.com/fs/com/Attachments/data_sheets/DS0112_093008.pdf|publisher=[[UTC Power]]|access-date=February 4, 2010|title=UTC Power – Model 400 PureCell System|year=2008|location=South Windsor, [[Connecticut]], United States|url-status=dead|archive-url=https://web.archive.org/web/20090824003547/http://www.utcpower.com/fs/com/Attachments/data_sheets/DS0112_093008.pdf|archive-date=August 24, 2009}}</ref> | 27,216 kg{{Clarify|date=March 2020|reason=This is the shipping weight, not the installed weight, which could be substantially different}} | 14.7 W/kg <!-- 400 kW average lifetime output --> | |- | GEFC 50V50A-VRB [[Vanadium redox battery]]<ref>{{cite web|url=http://www.gefc.com/info/2009112/2009112115605.shtml|title=GEFC 50V50A-VRB Vanadium Redox Battery Stack|publisher=GEFC|year=2010|access-date=February 5, 2010|archive-date=July 11, 2011|archive-url=https://web.archive.org/web/20110711081611/http://www.gefc.com/info/2009112/2009112115605.shtml|url-status=live}}</ref> | 80 kg | 31.3 W/kg (125 W/kg peak) <!-- 2.5 kW rated; 10kW max --> | |- | [[Ballard Power Systems]] Xcellsis HY-205 205 kW [[Proton-exchange membrane fuel cell|PEMFC]]<ref>{{cite web|url=http://www.fuelcells.org/info/charts/TransTechnical.pdf|archive-url=https://web.archive.org/web/20041013060109/http://www.fuelcells.org/info/charts/TransTechnical.pdf|url-status=dead|archive-date=2004-10-13|title=Transportation Fuel Cells – Technical Info.|access-date=2010-07-24|publisher=Fuel Cells 2000}}</ref> | 2,170 kg | 94.5 W/kg | [[Mercedes-Benz]] [[Mercedes-Benz Citaro|Citaro O530BZ]]{{Cref2|•}} |- | [[UTC Power]]/[[NASA]] 12 kW [[Alkaline fuel cell|AFC]]<ref>{{cite web|url=http://www.utcpower.com/fs/com/bin/fs_com_Page/0,11491,0115,00.html|title=Space Orbiter|publisher=[[UTC Power]]|access-date=February 5, 2010|year=2008|url-status=dead|archive-url=https://web.archive.org/web/20090905173435/http://www.utcpower.com/fs/com/bin/fs_com_Page/0%2C11491%2C0115%2C00.html|archive-date=September 5, 2009}}</ref> | 122 kg<!-- 270 pounds --> | 98 W/kg | [[Space Shuttle orbiter]]{{Cref2|•}} |- | [[Ballard Power Systems]] FCgen-1030 1.2 kW [[Cogeneration|CHP]] [[Proton-exchange membrane fuel cell|PEMFC]]<ref name="ballardfuelcells">{{cite web|url=http://www.ballard.com/files/pdf/Spec_Sheets/PEM_FC_Product_Portfolio_docmetrics.pdf|title=PEM Fuel Cell Product Portfolio|publisher=[[Ballard Power Systems]]|access-date=February 4, 2010|url-status=dead|archive-url=https://web.archive.org/web/20110707205935/http://www.ballard.com/files/pdf/Spec_Sheets/PEM_FC_Product_Portfolio_docmetrics.pdf|archive-date=July 7, 2011}}</ref> | 12 kg | 100 W/kg | Residential cogeneration |- | [[Ballard Power Systems]] FCvelocity-HD6 150 kW [[Proton-exchange membrane fuel cell|PEMFC]]<ref name="ballardfuelcells"/> | 400 kg | 375 W/kg | Bus and heavy duty |- | [[NASA Glenn Research Center]] 50 W [[Solid oxide fuel cell|SOFC]]<ref name="nasafuelcells">{{cite web|url=https://technology.grc.nasa.gov/documents/auto/Solid-Oxide-Fuel-Cells.pdf|title=High Power Density Solid Oxide Fuel Cell|publisher=[[NASA Glenn Research Center]]|access-date=June 24, 2015|url-status=dead|archive-url=https://web.archive.org/web/20130218040819/https://technology.grc.nasa.gov/documents/auto/Solid-Oxide-Fuel-Cells.pdf|archive-date=February 18, 2013}}</ref> | 0.071 kg | 700 W/kg | |- | [[Honda]] 2003 43 kW FC Stack [[Proton-exchange membrane fuel cell|PEMFC]]<ref>{{cite web|url=http://world.honda.com/FuelCell/FCX/FCXPK.pdf|access-date=February 4, 2010|title=Press Information Honda Fuel Cell Power FCX|date=December 2004|publisher=[[Honda]]|url-status=dead|archive-url=https://web.archive.org/web/20081201135119/http://www.world.honda.com/FuelCell/FCX/FCXPK.pdf|archive-date=December 1, 2008}}</ref>{{Cref2|•}} | 43 kg <!-- 43 kW --> | 1000 W/kg | [[Honda FCX Clarity]]{{Cref2|•}} |- | Lynntech [[Proton-exchange membrane fuel cell|PEMFC]] lab prototype<ref>{{cite conference|url=http://cat.inist.fr/?aModele=afficheN&cpsidt=2439605|title=Low-cost light weight high power density PEM fuel cell stack|last1=Murphy|first1=O.J.|last2=Cisar|first2=A.|last3=Clarke|first3=E.|book-title=Proceedings of the Symposium on Batteries and Fuel Cells for Portable Applications and Electric Vehicles|pages=3829–3840|year=1998|location=[[INIST]]|access-date=2008-10-02|archive-date=2015-10-16|archive-url=https://web.archive.org/web/20151016214031/http://cat.inist.fr/?aModele=afficheN&cpsidt=2439605|url-status=live}}</ref> | 0.347 kg <!-- "power output of over 520 W" --> | 1,500 W/kg | |- | PowerCell S3 125 kW commercial [[Proton-exchange membrane fuel cell|PEMFC]]<ref>{{cite web|url=https://www.powercell.se/wordpress/wp-content/uploads/2018/12/S3-Produktblad-190430.pdf|access-date=January 6, 2020|title=PowerCell S3 Data Sheet|archive-date=August 6, 2020|archive-url=https://web.archive.org/web/20200806120048/https://www.powercell.se/wordpress/wp-content/uploads/2018/12/S3-Produktblad-190430.pdf|url-status=dead}}</ref> | 43 kg <!-- 125 kW --> | 2,900 W/kg | |} {{Cnote2 Begin|liststyle=disc|colwidth=40em}} {{Cnote2|•|n=0|Full vehicle power-to-weight ratio shown [[#Vehicles|below]]}} {{Cnote2 End}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Power-to-weight ratio
(section)
Add topic