Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Philosophy of physics
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Newtonian physics=== The implicit axioms of Aristotelian physics with respect to movement of matter in space were superseded in [[Classical mechanics|Newtonian physics]] by [[Isaac Newton|Newton's]] [[Newton's laws of motion#Newton's first law|first law of motion]].<ref name = MaudlinPPST3-4 >[[Tim Maudlin]] (2012-07-22). ''Philosophy of Physics: Space and Time: Space and Time'' (Princeton Foundations of Contemporary Philosophy) (pp. 4β5). Princeton University Press. Kindle Edition. "Newtonian physics is implicit in his First Law of Motion: Law I : Every body perseveres in its state either of rest or of uniform motion in a straight line, except insofar as it is compelled to change its state by impressed forces. 1 This single law smashes the Aristotelian universe to smithereens."</ref>{{cquote|Every body perseveres in its state either of rest or of uniform motion in a straight line, except insofar as it is compelled to change its state by impressed forces.}} "Every body" includes the Moon, and an apple; and includes all types of matter, air as well as water, stones, or even a flame. Nothing has a natural or inherent motion.<ref name = MaudlinPPST5>[[Tim Maudlin]] (2012-07-22). ''Philosophy of Physics: Space and Time: Space and Time'' (Princeton Foundations of Contemporary Philosophy) (pp. 5). Princeton University Press. Kindle Edition.</ref> [[Absolute time and space|Absolute space]] being [[three-dimensional space|three-dimensional]] [[Euclidean space]], infinite and without a center.<ref name = MaudlinPPST5 /> Being "at rest" means being at the same place in absolute space over time.<ref name = MaudlinPPST9-10 >[[Tim Maudlin]] (2012-07-22). ''Philosophy of Physics: Space and Time: Space and Time'' (Princeton Foundations of Contemporary Philosophy) (pp. 9β10). Princeton University Press. Kindle Edition. "Newton believed in the existence of a spatial arena with the geometrical structure of E{{smallsup|3}}. He believed that this infinite three-dimensional space exists at every moment of time. And he also believed something much more subtle and controversial, namely, that identically the same points of space persist through time."</ref> The [[topology]] and [[Affine space|affine structure]] of space must permit movement in a [[Line (geometry)|straight line]] at a uniform velocity; thus both space and time must have [[Absolute time and space|definite, stable dimensions]].<ref name = Maudlin12 >[[Tim Maudlin]] (2012-07-22). ''Philosophy of Physics: Space and Time: Space and Time'' (Princeton Foundations of Contemporary Philosophy) (p. 12). Princeton University Press. Kindle Edition. "...space must have a topology, an affine structure, and a metric; time must be one-dimensional with a topology and a metric; and, most importantly, the individual parts of space must persist through time.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Philosophy of physics
(section)
Add topic