Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Open set
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations of open sets == {{See also|Almost open map|Glossary of topology}} Throughout, <math>(X, \tau)</math> will be a topological space. A subset <math>A \subseteq X</math> of a topological space <math>X</math> is called: <ul> <li>'''{{em|α-open}}''' if <math>A ~\subseteq~ \operatorname{int}_X \left( \operatorname{cl}_X \left( \operatorname{int}_X A \right) \right)</math>, and the complement of such a set is called '''{{em|α-closed}}'''.{{sfn|Hart|2004|p=9}}</li> <li>'''{{em|preopen}}''', '''{{em|nearly open}}''', or '''{{em|locally [[Dense subset|dense]]}}''' if it satisfies any of the following equivalent conditions: <ol> <li><math>A ~\subseteq~ \operatorname{int}_X \left( \operatorname{cl}_X A \right).</math>{{sfn|Hart|2004|pp=8–9}}</li> <li>There exists subsets <math>D, U \subseteq X</math> such that <math>U</math> is open in <math>X,</math> <math>D</math> is a [[dense subset]] of <math>X,</math> and <math>A = U \cap D.</math>{{sfn|Hart|2004|pp=8–9}}</li> <li>There exists an open (in <math>X</math>) subset <math>U \subseteq X</math> such that <math>A</math> is a dense subset of <math>U.</math>{{sfn|Hart|2004|pp=8–9}}</li> </ol> The complement of a preopen set is called '''{{em|preclosed}}'''. </li> <li>'''{{em|b-open}}''' if <math>A ~\subseteq~ \operatorname{int}_X \left( \operatorname{cl}_X A \right) ~\cup~ \operatorname{cl}_X \left( \operatorname{int}_X A \right)</math>. The complement of a b-open set is called '''{{em|b-closed}}'''.{{sfn|Hart|2004|p=9}}</li> <li>'''{{em|β-open}}''' or '''{{em|semi-preopen}}''' if it satisfies any of the following equivalent conditions: <ol> <li><math>A ~\subseteq~ \operatorname{cl}_X \left( \operatorname{int}_X \left( \operatorname{cl}_X A \right) \right)</math>{{sfn|Hart|2004|p=9}}</li> <li><math> \operatorname{cl}_X A</math> is a regular closed subset of <math>X.</math>{{sfn|Hart|2004|pp=8–9}}</li> <li>There exists a preopen subset <math>U</math> of <math>X</math> such that <math>U \subseteq A \subseteq \operatorname{cl}_X U.</math>{{sfn|Hart|2004|pp=8–9}}</li> </ol> The complement of a β-open set is called '''{{em|β-closed}}'''. </li> <li>'''{{em|[[sequentially open]]}}''' if it satisfies any of the following equivalent conditions: <ol> <li>Whenever a sequence in <math>X</math> converges to some point of <math>A,</math> then that sequence is eventually in <math>A.</math> Explicitly, this means that if <math>x_{\bull} = \left( x_i \right)_{i=1}^{\infty}</math> is a sequence in <math>X</math> and if there exists some <math>a \in A</math> is such that <math>x_{\bull} \to x</math> in <math>(X, \tau),</math> then <math>x_{\bull}</math> is eventually in <math>A</math> (that is, there exists some integer <math>i</math> such that if <math>j \geq i,</math> then <math>x_j \in A</math>).</li> <li><math>A</math> is equal to its '''{{em|sequential interior}}''' in <math>X,</math> which by definition is the set :<math>\begin{alignat}{4} \operatorname{SeqInt}_X A :&= \{ a \in A ~:~ \text{ whenever a sequence in } X \text{ converges to } a \text{ in } (X, \tau), \text{ then that sequence is eventually in } A \} \\ &= \{ a \in A ~:~ \text{ there does NOT exist a sequence in } X \setminus A \text{ that converges in } (X, \tau) \text{ to a point in } A \} \\ \end{alignat} </math> </li> </ol> The complement of a sequentially open set is called '''{{em|sequentially closed}}'''. A subset <math>S \subseteq X</math> is sequentially closed in <math>X</math> if and only if <math>S</math> is equal to its '''{{em|sequential closure}}''', which by definition is the set <math>\operatorname{SeqCl}_X S</math> consisting of all <math>x \in X</math> for which there exists a sequence in <math>S</math> that converges to <math>x</math> (in <math>X</math>). </li> <li>'''{{em|[[Almost open set|almost open]]}}''' and is said to have '''{{em|the Baire property}}''' if there exists an open subset <math>U \subseteq X</math> such that <math>A \bigtriangleup U</math> is a [[Meager set|meager subset]], where <math>\bigtriangleup</math> denotes the [[symmetric difference]].<ref name="oxtoby">{{citation|title=Measure and Category|volume=2|series=Graduate Texts in Mathematics|first=John C.|last=Oxtoby|edition=2nd|publisher=Springer-Verlag|year=1980|isbn=978-0-387-90508-2|contribution=4. The Property of Baire|pages=19–21|url=https://books.google.com/books?id=wUDjoT5xIFAC&pg=PA19}}.</ref> * The subset <math>A \subseteq X</math> is said to have '''the Baire property in the restricted sense''' if for every subset <math>E</math> of <math>X</math> the intersection <math>A\cap E</math> has the Baire property relative to <math>E</math>.<ref>{{citation|last=Kuratowski|first=Kazimierz|authorlink=Kazimierz Kuratowski|title= Topology. Vol. 1|publisher=Academic Press and Polish Scientific Publishers|year=1966}}.</ref></li> <li>'''{{em|semi-open}}''' if <math>A ~\subseteq~ \operatorname{cl}_X \left( \operatorname{int}_X A \right)</math> or, equivalently, <math>\operatorname{cl}_X A = \operatorname{cl}_X \left( \operatorname{int}_X A \right)</math>. The complement in <math>X</math> of a semi-open set is called a '''{{em|semi-closed}} set'''.{{sfn|Hart|2004|p=8}} * The '''{{em|semi-closure}}''' (in <math>X</math>) of a subset <math>A \subseteq X,</math> denoted by <math>\operatorname{sCl}_X A,</math> is the intersection of all semi-closed subsets of <math>X</math> that contain <math>A</math> as a subset.{{sfn|Hart|2004|p=8}}</li> <li>'''{{em|semi-θ-open}}''' if for each <math>x \in A</math> there exists some semiopen subset <math>U</math> of <math>X</math> such that <math>x \in U \subseteq \operatorname{sCl}_X U \subseteq A.</math>{{sfn|Hart|2004|p=8}}</li> <li>'''{{em|θ-open}}''' (resp. '''{{em|δ-open}}''') if its complement in <math>X</math> is a θ-closed (resp. {{em|δ-closed}}) set, where by definition, a subset of <math>X</math> is called '''{{em|θ-closed}}''' (resp. '''{{em|δ-closed}}''') if it is equal to the set of all of its θ-cluster points (resp. δ-cluster points). A point <math>x \in X</math> is called a '''{{em|θ-cluster point}}''' (resp. a '''{{em|δ-cluster point}}''') of a subset <math>B \subseteq X</math> if for every open neighborhood <math>U</math> of <math>x</math> in <math>X,</math> the intersection <math>B \cap \operatorname{cl}_X U</math> is not empty (resp. <math>B \cap \operatorname{int}_X\left( \operatorname{cl}_X U \right)</math> is not empty).{{sfn|Hart|2004|p=8}}</li> </ul> Using the fact that :<math>A ~\subseteq~ \operatorname{cl}_X A ~\subseteq~ \operatorname{cl}_X B</math> {{spaces|4}}and{{spaces|4}} <math>\operatorname{int}_X A ~\subseteq~ \operatorname{int}_X B ~\subseteq~ B</math> whenever two subsets <math>A, B \subseteq X</math> satisfy <math>A \subseteq B,</math> the following may be deduced: * Every α-open subset is semi-open, semi-preopen, preopen, and b-open. * Every b-open set is semi-preopen (i.e. β-open). * Every preopen set is b-open and semi-preopen. * Every semi-open set is b-open and semi-preopen. Moreover, a subset is a regular open set if and only if it is preopen and semi-closed.{{sfn|Hart|2004|pp=8–9}} The intersection of an α-open set and a semi-preopen (resp. semi-open, preopen, b-open) set is a semi-preopen (resp. semi-open, preopen, b-open) set.{{sfn|Hart|2004|pp=8–9}} Preopen sets need not be semi-open and semi-open sets need not be preopen.{{sfn|Hart|2004|pp=8–9}} Arbitrary unions of preopen (resp. α-open, b-open, semi-preopen) sets are once again preopen (resp. α-open, b-open, semi-preopen).{{sfn|Hart|2004|pp=8-9}} However, finite intersections of preopen sets need not be preopen.{{sfn|Hart|2004|p=8}} The set of all α-open subsets of a space <math>(X, \tau)</math> forms a topology on <math>X</math> that is [[Comparison of topologies|finer]] than <math>\tau.</math>{{sfn|Hart|2004|p=9}} A topological space <math>X</math> is [[Hausdorff space|Hausdorff]] if and only if every [[Compact space|compact subspace]] of <math>X</math> is θ-closed.{{sfn|Hart|2004|p=8}} A space <math>X</math> is [[totally disconnected]] if and only if every regular closed subset is preopen or equivalently, if every semi-open subset is preopen. Moreover, the space is totally disconnected if and only if the '''{{em|[[Closure (topology)|closure]]}}''' of every preopen subset is open.{{sfn|Hart|2004|p=9}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Open set
(section)
Add topic