Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Microscope
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Scanning probe=== {{main|Scanning probe microscopy}} The different types of scanning probe microscopes arise from the many different types of interactions that occur when a small probe is scanned over and interacts with a specimen. These interactions or modes can be recorded or mapped as function of location on the surface to form a characterization map. The three most common types of scanning probe microscopes are [[atomic force microscopy|atomic force microscopes]] (AFM), [[near-field scanning optical microscopy|near-field scanning optical microscopes]] (NSOM or SNOM, scanning near-field optical microscopy), and [[scanning tunneling microscopy|scanning tunneling microscopes]] (STM).<ref name="Bhushan">{{cite book|editor1-last=Bhushan|editor1-first=Bharat|title=Springer handbook of nanotechnology|date=2010|publisher=Springer|location=Berlin|isbn=978-3-642-02525-9|page=620|edition=3rd rev. & extended}}</ref> An atomic force microscope has a fine probe, usually of silicon or silicon nitride, attached to a cantilever; the probe is scanned over the surface of the sample, and the forces that cause an interaction between the probe and the surface of the sample are measured and mapped. A near-field scanning optical microscope is similar to an AFM but its probe consists of a light source in an optical fiber covered with a tip that has usually an aperture for the light to pass through. The microscope can capture either transmitted or reflected light to measure very localized optical properties of the surface, commonly of a biological specimen. Scanning tunneling microscopes have a metal tip with a single apical atom; the tip is attached to a tube through which a current flows.<ref name="Sakurai">{{cite book|editor1-last=Sakurai|editor1-first=T.|editor2-last=Watanabe|editor2-first=Y.|title=Advances in scanning probe microscopy|date=2000|publisher=Springer|location=Berlin|isbn=978-3-642-56949-4}}</ref> The tip is scanned over the surface of a conductive sample until a tunneling current flows; the current is kept constant by computer movement of the tip and an image is formed by the recorded movements of the tip.<ref name="Bhushan"/> [[File:Leaf epidermis.jpg|thumb|Leaf surface viewed by a scanning electron microscope]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Microscope
(section)
Add topic