Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Kinetic theory of gases
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Collisions with container wall === For an ideal gas in equilibrium, the rate of collisions with the container wall and velocity distribution of particles hitting the container wall can be calculated<ref name="OCW">{{cite web |title=5.62 Physical Chemistry II |url=https://ocw.mit.edu/courses/chemistry/5-62-physical-chemistry-ii-spring-2008/lecture-notes/29_562ln08.pdf |website=MIT OpenCourseWare}}</ref> based on naive kinetic theory, and the results can be used for analyzing [[Effusion#Physics in Effusion|effusive flow rate]]s, which is useful in applications such as the [[Gaseous diffusion#Technology|gaseous diffusion]] method for [[Isotope separation#Diffusion|isotope separation]]. Assume that in the container, the number density (number per unit volume) is <math>n = N/V</math> and that the particles obey [[Maxwell-Boltzmann distribution|Maxwell's velocity distribution]]: <math display="block">f_\text{Maxwell}(v_x,v_y,v_z) \, dv_x \, dv_y \, dv_z = \left(\frac{m}{2 \pi k_\text{B} T}\right)^{3/2} e^{- \frac{mv^2}{2k_\text{B}T}} \, dv_x \, dv_y \, dv_z</math> Then for a small area <math>dA</math> on the container wall, a particle with speed <math>v</math> at angle <math>\theta</math> from the normal of the area <math>dA</math>, will collide with the area within time interval <math>dt</math>, if it is within the distance <math>v\,dt</math> from the area <math>dA</math>. Therefore, all the particles with speed <math>v</math> at angle <math>\theta</math> from the normal that can reach area <math>dA</math> within time interval <math>dt</math> are contained in the tilted pipe with a height of <math>v\cos (\theta) dt</math> and a volume of <math>v\cos (\theta) \,dA\,dt</math>. The total number of particles that reach area <math>dA</math> within time interval <math>dt</math> also depends on the velocity distribution; All in all, it calculates to be:<math display="block">n v \cos(\theta) \, dA\, dt \times\left(\frac{m}{2 \pi k_\text{B}T}\right)^{3/2} e^{- \frac{mv^2}{2k_\text{B}T}} \left( v^2 \sin(\theta) \, dv \, d\theta \, d\phi \right).</math> Integrating this over all appropriate velocities within the constraint <math>v > 0</math>, <math display="inline">0 < \theta < \frac{\pi}{2}</math>, <math>0 < \phi < 2\pi</math> yields the number of atomic or molecular collisions with a wall of a container per unit area per unit time: <math display="block">J_\text{collision} = \frac{\displaystyle\int_0^{\pi/2} \cos(\theta) \sin(\theta) \, d\theta}{\displaystyle\int_0^\pi \sin(\theta) \, d\theta}\times n \bar v = \frac{1}{4} n \bar v = \frac{n}{4} \sqrt{\frac{8 k_\mathrm{B} T}{\pi m}}. </math> This quantity is also known as the "impingement rate" in vacuum physics. Note that to calculate the average speed <math>\bar{v}</math> of the Maxwell's velocity distribution, one has to integrate over <math>v > 0 </math>, <math>0 < \theta < \pi </math>, <math>0 < \phi < 2\pi</math>. The momentum transfer to the container wall from particles hitting the area <math>dA</math> with speed <math>v</math> at angle <math>\theta</math> from the normal, in time interval <math>dt</math> is: <math display="block">[2mv \cos(\theta)]\times n v \cos(\theta) \, dA\, dt \times\left(\frac{m}{2 \pi k_\text{B}T}\right)^{3/2} e^{- \frac{mv^2}{2k_\text{B}T}} \left( v^2 \sin(\theta) \, dv \, d\theta \, d\phi \right).</math> Integrating this over all appropriate velocities within the constraint <math>v > 0</math>, <math display="inline">0 < \theta < \frac{\pi}{2}</math>, <math>0 < \phi < 2\pi</math> yields the [[pressure]] (consistent with [[Ideal gas law]]): <math display="block">P = \frac{\displaystyle 2\int_0^{\pi/2} \cos^2(\theta) \sin(\theta) \, d\theta}{\displaystyle \int_0^\pi \sin(\theta) \, d\theta}\times n mv_\text{rms}^2 = \frac{1}{3} n mv_\text{rms}^2 = \frac{2}{3} n\langle E_\text{kin}\rangle = n k_\mathrm{B} T </math> If this small area <math>A</math> is punched to become a small hole, the [[Effusion#Physics in Effusion|effusive flow rate]] will be: <math display="block">\Phi_\text{effusion} = J_\text{collision} A= n A \sqrt{\frac{k_\mathrm{B} T}{2 \pi m}}. </math> Combined with the [[ideal gas law]], this yields <math display="block">\Phi_\text{effusion} = \frac{P A}{\sqrt{2 \pi m k_\mathrm{B} T}}. </math> The above expression is consistent with [[Graham's law]]. To calculate the velocity distribution of particles hitting this small area, we must take into account that all the particles with <math>(v,\theta,\phi)</math> that hit the area <math>dA</math> within the time interval <math>dt</math> are contained in the tilted pipe with a height of <math>v\cos (\theta) \, dt</math> and a volume of <math>v\cos (\theta) \, dA \, dt</math>; Therefore, compared to the Maxwell distribution, the velocity distribution will have an extra factor of <math>v\cos \theta</math>: <math display="block">\begin{align} f(v,\theta,\phi) \, dv \, d\theta \, d\phi &= \lambda v\cos{\theta} \left(\frac{m}{2 \pi k T}\right)^{3/2} e^{- \frac{mv^2}{2k_\mathrm{B} T}}(v^2\sin{\theta} \, dv \, d\theta \, d\phi) \end{align}</math> with the constraint <math display="inline">v > 0</math>, <math display="inline">0 < \theta < \frac{\pi}{2}</math>, <math>0 < \phi < 2\pi</math>. The constant <math>\lambda</math> can be determined by the normalization condition <math display="inline">\int f(v,\theta,\phi) \, dv \, d\theta \, d\phi=1</math> to be <math display="inline">4/\bar{v} </math>, and overall: <math display="block">\begin{align} f(v,\theta,\phi) \, dv \, d\theta \, d\phi &= \frac{1}{2\pi} \left(\frac{m}{k_\mathrm{B} T}\right)^2e^{- \frac{mv^2}{2k_\mathrm{B} T}} (v^3\sin{\theta}\cos{\theta} \, dv \, d\theta \, d\phi) \\ \end{align};\quad v>0,\, 0<\theta<\frac \pi 2,\, 0<\phi<2\pi</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Kinetic theory of gases
(section)
Add topic