Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Greenhouse effect
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Radiative balance === The temperature of a planet depends on the [[Earth's energy budget|balance]] between incoming radiation and outgoing radiation. If incoming radiation exceeds outgoing radiation, a planet will warm. If outgoing radiation exceeds incoming radiation, a planet will cool. A planet will tend towards a state of [[radiative equilibrium]], in which the power of outgoing radiation equals the power of absorbed incoming radiation.<ref name="cimss">{{cite web |title=Earth's Radiation Balance |url=https://cimss.ssec.wisc.edu/wxwise/homerbe.html |website=CIMSS: University of Wisconsin |access-date=25 April 2023}}</ref> Earth's [[Earth's energy budget|energy imbalance]] is the amount by which the power of incoming sunlight absorbed by Earth's surface or atmosphere exceeds the power of outgoing longwave radiation emitted to space. Energy imbalance is the fundamental measurement that drives surface temperature.<ref name="SciAmEEB">{{cite web |title=Don't Worry about CO2, Worry about the Earth's 'Energy Balance' |url=https://www.scientificamerican.com/article/dont-worry-about-co2-worry-about-the-earths-energy-balance/ |publisher=Scientific American |access-date=2 June 2023}}</ref> A [[United Nations|UN]] presentation says "The EEI is the most critical number defining the prospects for continued global warming and climate change."<ref name="UNeei"/> One study argues, "The absolute value of EEI represents the most fundamental metric defining the status of global climate change."<ref name="vsh2016">{{cite journal |last1=von Schuckmann |first1=K. |last2=Palmer |first2=M. |last3=Trenberth |first3=K. |last4=Cazenave |first4=A. |last5=Chambers |first5=D. |last6=Champollion |first6=N. |last7=Hansen |first7=J. |last8=Josey |first8=S. A. |last9=Loeb |first9=N. |last10=Mathiew |first10=P.P. |last11=Meyssignac |first11=B. |last12=Wild |first12=M. |title=An imperative to monitor Earth's energy imbalance |journal=Nature Climate Change |date=2016 |volume=6 |issue=2 |pages=138–144 |doi=10.1038/nclimate2876|bibcode=2016NatCC...6..138V |url=http://nora.nerc.ac.uk/id/eprint/512751/1/vonSchuckmannPostprint.pdf }}</ref> Earth's energy imbalance (EEI) was about 0.7 W/m{{sup|2}} as of around 2015, indicating that Earth as a whole is accumulating thermal energy and is in a process of becoming warmer.<ref name="ipcc-ar6wg1-ch7" />{{rp|934}} Over 90% of the retained energy goes into warming the oceans, with much smaller amounts going into heating the land, atmosphere, and ice.<ref>{{cite web |last1=Hawkins |first1=Ed |title=Earth's energy imbalance |url=https://www.climate-lab-book.ac.uk/2016/earths-energy-imbalance/ |website=Climate Lab Book |access-date=16 July 2023 |date=27 January 2016}}</ref> [[File:Outgoing radiation with and without Greenhouse effect.svg|thumb|upright=2.5|Comparison of Earth's upward flow of longwave radiation in reality and in a hypothetical scenario in which greenhouse gases and clouds are removed or lose their ability to absorb longwave radiation—without changing Earth's albedo (i.e., reflection/absorption of sunlight). Top shows the balance between Earth's heating and cooling as measured at the top of the atmosphere (TOA). Panel (a) shows the real situation with an active greenhouse effect.<ref name="rrtmeeb">{{cite web |title=RRTM Earth's Energy Budget |url=http://climatemodels.uchicago.edu/rrtm/index.html |publisher=University of Chicago |access-date=9 June 2023}}</ref> Panel (b) shows the situation immediately after absorption stops; all longwave radiation emitted by the surface would reach space; there would be more cooling (via longwave radiation emitted to space) than warming (from sunlight). This imbalance would lead to a rapid temperature drop. Panel (c) shows the final stable steady state, after the surface cools sufficiently to emit only enough longwave radiation to match the energy flow from absorbed sunlight.<ref name="rrtmeeb"/>]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Greenhouse effect
(section)
Add topic