Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Geotechnical engineering
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Offshore === {{Main|Offshore geotechnical engineering}} [[File: Offshore platforms.jpg|thumb|Platforms offshore Mexico.]] ''Offshore'' (or ''marine'') ''geotechnical engineering'' is concerned with foundation design for human-made structures in the [[sea]], away from the [[coast]]line (in opposition to ''onshore'' or ''nearshore'' engineering). [[Oil platform]]s, [[artificial island]]s and [[submarine pipeline]]s are examples of such structures.<ref name="Dean">Dean, E.T.R. (2010). Offshore Geotechnical Engineering – Principles and Practice. Thomas Telford, Reston, VA, 520 p.</ref> There are a number of significant differences between onshore and offshore geotechnical engineering.<ref name="Dean" /><ref name="Randolph&Gourvenec">Randolph, M. and [[Susan Gourvenec|Gourvenec, S.]], 2011. Offshore geotechnical engineering. Spon Press, N.Y., 550 p.</ref> Notably, site investigation and ground improvement on the seabed are more expensive; the offshore structures are exposed to a wider range of [[geohazard]]s; and the environmental and financial consequences are higher in case of failure. Offshore structures are exposed to various environmental loads, notably [[wind]], [[wind wave|wave]]s and [[Ocean current|currents]]. These phenomena may affect the integrity or the serviceability of the structure and its foundation during its operational lifespan and need to be taken into account in offshore design. In [[subsea]] geotechnical engineering, seabed materials are considered a two-phase material composed of rock or [[mineral]] particles and water.<ref name="Das">Das, B.M., 2010. Principles of geotechnical engineering. Cengage Learning, Stamford, 666 p.</ref><ref name="Atkinson">Atkinson, J., 2007. The mechanics of soils and foundations. Taylor & Francis, N.Y., 442 p.</ref> Structures may be fixed in place in the seabed—as is the case for [[pier]]s, [[jetties]] and fixed-bottom wind turbines—or may comprise a floating structure that remains roughly fixed relative to its geotechnical anchor point. Undersea mooring of human-engineered floating structures include a large number of [[Offshore drilling rig|offshore oil and gas platforms]] and, since 2008, a few [[floating wind turbine]]s. Two common types of engineered design for anchoring floating structures include [[Tension-leg platform|tension-leg]] and [[catenary]] [[Mooring (watercraft)|loose mooring]] systems.<ref name="mit200710"> [http://web.mit.edu/flowlab/pdf/Floating_Offshore_Wind_Turbines.pdf Floating Offshore Wind Turbines: Responses in a Sea state – Pareto Optimal Designs and Economic Assessment], P. Sclavounos et al., October 2007.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Geotechnical engineering
(section)
Add topic