Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Fluoride
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== {{See also|Fluorochemical industry|Biological aspects of fluorine|Fluorine}} Fluoride salts and hydrofluoric acid are the main fluorides of industrial value. ===Organofluorine chemistry=== {{main|Organofluorine chemistry}} Organofluorine compounds are pervasive. Many drugs, many polymers, refrigerants, and many inorganic compounds are made from fluoride-containing reagents. Often fluorides are converted to hydrogen fluoride, which is a major reagent and precursor to reagents. Hydrofluoric acid and its anhydrous form, [[hydrogen fluoride]], are particularly important.<ref name="Aigueperse">{{cite encyclopedia|last1=Aigueperse|first1=Jean|encyclopedia=Ullmann's Encyclopedia of Industrial Chemistry|last2=Mollard|first2=Paul|last3=Devilliers|first3=Didier|last4=Chemla|first4=Marius|last5=Faron|first5=Robert|last6=Romano|first6=René|last7=Cuer|first7=Jean Pierre|year=2000|doi=10.1002/14356007.a11_307|isbn=978-3527306732|chapter=Fluorine Compounds, Inorganic}}</ref> ===Production of metals and their compounds=== The main uses of fluoride, in terms of volume, are in the production of cryolite, Na<sub>3</sub>AlF<sub>6</sub>. It is used in [[aluminium smelting]]. Formerly, it was mined, but now it is derived from hydrogen fluoride. Fluorite is used on a large scale to separate slag in steel-making. Mined [[fluorite]] (CaF<sub>2</sub>) is a commodity chemical used in steel-making. [[Uranium hexafluoride]] is employed in the purification of uranium isotopes. ===Cavity prevention=== {{main|Fluoride therapy|Water fluoridation}} [[Image:Sodium fluoride tablets.jpg|thumb|right|Sodium fluoride sold in tablets for cavity prevention.]] Fluoride-containing compounds, such as [[sodium fluoride]] or [[sodium monofluorophosphate]] are used in topical and systemic [[fluoride therapy]] for preventing [[Dental caries|tooth decay]]. They are used for [[water fluoridation]] and in many products associated with [[oral hygiene]].<ref name="mcdonagh2000">{{cite journal|author1=McDonagh M. S. |author2=Whiting P. F. |author3=Wilson P. M. |author4=Sutton A. J. |author5=Chestnutt I. |author6=Cooper J. |author7=Misso K. |author8=Bradley M. |author9=Treasure E. |author10=Kleijnen J. |year=2000 |title=Systematic review of water fluoridation |journal=[[British Medical Journal]] |volume=321 |issue=7265| pages=855–859|doi=10.1136/bmj.321.7265.855 |pmid=11021861|pmc=27492}}</ref> Originally, sodium fluoride was used to fluoridate water; [[hexafluorosilicic acid]] (H<sub>2</sub>SiF<sub>6</sub>) and its salt [[sodium hexafluorosilicate]] (Na<sub>2</sub>SiF<sub>6</sub>) are more commonly used additives, especially in the United States. The fluoridation of water is known to prevent tooth decay<ref>{{cite journal |vauthors=Griffin SO, Regnier E, Griffin PM, Huntley V |title=Effectiveness of fluoride in preventing caries in adults |journal=J. Dent. Res. |volume=86 |issue=5 |pages=410–5 |year=2007 |pmid=17452559 |doi=10.1177/154405910708600504|hdl=10945/60693 |s2cid=58958881 |hdl-access=free }}</ref><ref>{{cite journal |author1=Winston A. E. |author2=Bhaskar S. N. |title=Caries prevention in the 21st century |journal=J. Am. Dent. Assoc. |volume=129 |issue=11 |pages=1579–87 |date=1 November 1998 |pmid=9818575 |url=http://jada.ada.org/cgi/pmidlookup?view=long&pmid=9818575 |archive-url=https://archive.today/20120715143950/http://jada.ada.org/cgi/pmidlookup?view=long&pmid=9818575 |url-status=dead |archive-date=15 July 2012 |doi=10.14219/jada.archive.1998.0104 }}</ref> and is considered by the U.S. [[Centers for Disease Control and Prevention]] to be "one of 10 great public health achievements of the 20th century".<ref>{{cite web|title=Community Water Fluoridation|url=https://www.cdc.gov/fluoridation/|publisher=Centers for Disease Control and Prevention|access-date=10 March 2016}}</ref><ref>{{cite web|title=Ten Great Public Health Achievements in the 20th Century|url=https://www.cdc.gov/about/history/tengpha.htm|publisher=Centers for Disease Control and Prevention|access-date=10 March 2016|archive-url=https://web.archive.org/web/20160313072852/http://www.cdc.gov/about/history/tengpha.htm|archive-date=2016-03-13|url-status=dead}}</ref> In some countries where large, centralized water systems are uncommon, fluoride is delivered to the populace by fluoridating table salt. Fluoridation of water has its critics {{crossreference|(see [[Water fluoridation controversy]])}}.<ref>{{cite journal |author=Newbrun E |title=The fluoridation war: a scientific dispute or a religious argument? |journal=Journal of Public Health Dentistry |volume=56 |issue=5 Spec No |pages=246–52 |year=1996 |pmid=9034969 |doi=10.1111/j.1752-7325.1996.tb02447.x}}</ref> Fluoridated [[toothpaste]] is in common use. [[Meta-analysis]] show the efficacy of 500 ppm fluoride in toothpastes.<ref>{{Cite journal|last1=Walsh|first1=Tanya|last2=Worthington|first2=Helen V.|last3=Glenny|first3=Anne-Marie|last4=Marinho|first4=Valeria Cc|last5=Jeroncic|first5=Ana|date=March 4, 2019|title=Fluoride toothpastes of different concentrations for preventing dental caries|journal=Cochrane Database of Systematic Reviews|volume=3|issue=3|pages=CD007868|doi=10.1002/14651858.CD007868.pub3|issn=1469-493X|pmc=6398117|pmid=30829399}}</ref><ref>{{Cite web|title=Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations|url=https://www.springermedizin.de/remineralization-of-initial-carious-lesions-in-deciduous-enamel-/8679072|access-date=2021-02-24|website=springermedizin.de|language=de}}</ref> However, no beneficial effect can be detected when more than one fluoride source is used for daily oral care.<ref>{{Cite journal|last1=Hausen|first1=H.|last2=Kärkkäinen|first2=S.|last3=Seppä|first3=L.|date=February 2000|title=Application of the high-risk strategy to control dental caries|url=https://pubmed.ncbi.nlm.nih.gov/10634681/|journal=Community Dentistry and Oral Epidemiology|volume=28|issue=1|pages=26–34|doi=10.1034/j.1600-0528.2000.280104.x|issn=0301-5661|pmid=10634681}}</ref>{{request quotation|date=August 2021}} ===Laboratory reagent=== Fluoride salts are commonly used in biological assay processing to [[enzyme inhibitor|inhibit]] the activity of [[phosphatases]], such as [[serine]]/[[threonine]] phosphatases.<ref>{{cite journal |vauthors=Nakai C, Thomas JA |title=Properties of a phosphoprotein phosphatase from bovine heart with activity on glycogen synthase, phosphorylase, and histone |journal=J. Biol. Chem. |volume=249 |issue=20 |pages=6459–67 |year=1974 |doi=10.1016/S0021-9258(19)42179-0 |pmid=4370977 |url=http://www.jbc.org/cgi/pmidlookup?view=long&pmid=4370977|doi-access=free }}</ref> Fluoride mimics the [[nucleophile|nucleophilic]] [[hydroxide]] ion in these enzymes' active sites.<ref>{{cite journal |vauthors=Schenk G, Elliott TW, Leung E |title=Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle |journal=BMC Struct. Biol. |volume=8 |page=6 |year=2008 |pmid=18234116 |doi=10.1186/1472-6807-8-6 |pmc=2267794|display-authors=etal |doi-access=free }}</ref> [[Beryllium fluoride]] and [[aluminium fluoride]] are also used as phosphatase inhibitors, since these compounds are structural mimics of the [[phosphate]] group and can act as analogues of the [[transition state]] of the reaction.<ref>{{cite journal |vauthors=Wang W, Cho HS, Kim R |title=Structural characterization of the reaction pathway in phosphoserine phosphatase: crystallographic "snapshots" of intermediate states |journal=J. Mol. Biol. |volume=319 |issue=2 |pages=421–31 |year=2002 |pmid=12051918 |doi=10.1016/S0022-2836(02)00324-8 |display-authors=etal}}</ref><ref>{{cite journal |vauthors=Cho H, Wang W, Kim R |title=BeF(3)(-) acts as a phosphate analog in proteins phosphorylated on aspartate: structure of a BeF(3)(-) complex with phosphoserine phosphatase |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=98 |issue=15 |pages=8525–30 |year=2001 |pmid=11438683 |doi=10.1073/pnas.131213698 |pmc=37469|bibcode = 2001PNAS...98.8525C |display-authors=etal|doi-access=free }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Fluoride
(section)
Add topic