Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ellipse
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== General ellipse === {{Main|Matrix representation of conic sections}} [[File:General ellipse.png|thumb|right|upright=1.25|A general ellipse in the plane can be uniquely described as a bivariate quadratic equation of Cartesian coordinates, or using center, semi-major and semi-minor axes, and angle]] In [[analytic geometry]], the ellipse is defined as a [[Quadratic form|quadric]]: the set of points <math>(x,\, y)</math> of the [[Cartesian plane]] that, in non-degenerate cases, satisfy the [[Implicit and explicit functions|implicit]] equation<ref>{{cite book|url=https://books.google.com/books?id=yMdHnyerji8C | title=Precalculus with Limits|last1=Larson|first1=Ron| last2=Hostetler|first2=Robert P. | last3=Falvo|first3=David C.| publisher=Cengage Learning|year=2006 | isbn=978-0-618-66089-6|page=767 | chapter=Chapter 10 | chapter-url=https://books.google.com/books?id=yMdHnyerji8C&pg=PA767}} </ref><ref>{{cite book| url=https://books.google.com/books?id=9HRLAn326zEC | title=Precalculus| last1=Young|first1=Cynthia Y.|author-link=Cynthia Y. Young| publisher=John Wiley and Sons| year=2010| isbn=978-0-471-75684-2|page=831| chapter=Chapter 9| chapter-url=https://books.google.com/books?id=9HRLAn326zEC&pg=PA831}} </ref> <math display="block">Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0</math> provided <math>B^2 - 4AC < 0.</math> To distinguish the [[degenerate conic|degenerate cases]] from the non-degenerate case, let ''β'' be the [[determinant]] <math display="block">\Delta = \begin{vmatrix} A & \frac{1}{2}B & \frac{1}{2}D \\ \frac{1}{2}B & C & \frac{1}{2}E \\ \frac{1}{2}D & \frac{1}{2}E & F \end{vmatrix} = ACF + \tfrac14 BDE - \tfrac14(AE^2 + CD^2 + FB^2). </math> Then the ellipse is a non-degenerate real ellipse if and only if ''Cβ'' < 0. If ''Cβ'' > 0, we have an imaginary ellipse, and if ''β'' = 0, we have a point ellipse.<ref name="Lawrence">Lawrence, J. Dennis, ''A Catalog of Special Plane Curves'', Dover Publ., 1972.</ref>{{rp|p=63}} The general equation's coefficients can be obtained from known semi-major axis <math>a</math>, semi-minor axis <math>b</math>, center coordinates <math>\left(x_\circ,\, y_\circ\right)</math>, and rotation angle <math>\theta</math> (the angle from the positive horizontal axis to the ellipse's major axis) using the formulae: <math display="block">\begin{align} A &= a^2 \sin^2\theta + b^2 \cos^2\theta & B &= 2\left(b^2 - a^2\right) \sin\theta \cos\theta \\[1ex] C &= a^2 \cos^2\theta + b^2 \sin^2\theta & D &= -2A x_\circ - B y_\circ \\[1ex] E &= - B x_\circ - 2C y_\circ & F &= A x_\circ^2 + B x_\circ y_\circ + C y_\circ^2 - a^2 b^2. \end{align}</math> These expressions can be derived from the canonical equation <math display="block">\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1</math> by a Euclidean transformation of the coordinates <math>(X,\, Y)</math>: <math display="block">\begin{align} X &= \left(x - x_\circ\right) \cos\theta + \left(y - y_\circ\right) \sin\theta, \\ Y &= -\left(x - x_\circ\right) \sin\theta + \left(y - y_\circ\right) \cos\theta. \end{align}</math> Conversely, the canonical form parameters can be obtained from the general-form coefficients by the equations:<ref name="mathworld"/> <math display="block">\begin{align} a, b &= \frac{-\sqrt{2 \big(A E^2 + C D^2 - B D E + (B^2 - 4 A C) F\big)\big((A + C) \pm \sqrt{(A - C)^2 + B^2}\big)}}{B^2 - 4 A C}, \\ x_\circ &= \frac{2CD - BE}{B^2 - 4AC}, \\[5mu] y_\circ &= \frac{2AE - BD}{B^2 - 4AC}, \\[5mu] \theta &= \tfrac12 \operatorname{atan2}(-B,\, C-A), \end{align}</math> where {{math|[[atan2]]}} is the 2-argument arctangent function.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ellipse
(section)
Add topic