Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cyanobacteria
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Cyanobionts === [[File:Leaf and root colonization by cyanobacteria.jpg|thumb|upright=2|right| {{center|'''Symbiosis with land plants'''{{hsp}}<ref name=Lee2021>{{cite journal | vauthors = Lee SM, Ryu CM | title = Algae as New Kids in the Beneficial Plant Microbiome | journal = Frontiers in Plant Science | volume = 12 | pages = 599742 | date = 4 Feb 2021 | pmid = 33613596 | pmc = 7889962 | doi = 10.3389/fpls.2021.599742 | publisher = Frontiers Media SA | doi-access = free | bibcode = 2021FrPS...1299742L }} {{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref><br />Leaf and root colonization by cyanobacteria}} (1) Cyanobacteria enter the leaf tissue through the [[stomata]] and colonize the intercellular space, forming a cyanobacterial loop.<br /> (2) On the root surface, cyanobacteria exhibit two types of colonization pattern; in the [[root hair]], filaments of ''[[Anabaena]]'' and ''[[Nostoc]]'' species form loose colonies, and in the restricted zone on the root surface, specific ''Nostoc'' species form cyanobacterial colonies.<br /> (3) Co-inoculation with [[2,4-Dichlorophenoxyacetic acid|2,4-D]] and ''Nostoc'' spp. increases para-nodule formation and nitrogen fixation. A large number of ''Nostoc'' spp. isolates colonize the root [[endosphere]] and form para-nodules.<ref name=Lee2021 />]] {{main|Cyanobiont}} Some cyanobacteria, the so-called [[cyanobiont]]s (cyanobacterial symbionts), have a [[symbiotic]] relationship with other organisms, both unicellular and multicellular.<ref name=Kim2020 /> As illustrated on the right, there are many examples of cyanobacteria interacting [[symbiotically]] with [[land plant]]s.<ref>{{cite journal |doi=10.1046/j.1469-8137.1999.00352.x |title=Colonization of wheatpara-nodules by the N2-fixing cyanobacterium ''Nostocsp''. Strain 2S9B |year=1999 | vauthors = Gantar M, Elhai J |journal=[[New Phytologist]] |volume=141 |issue=3 |pages=373β379 |doi-access=free}}</ref><ref>{{cite journal |doi=10.1007/s003740000243 |title=Mechanical damage of roots provides enhanced colonization of the wheat endorhizosphere by the dinitrogen-fixing cyanobacterium Nostoc sp. Strain 2S9B |year=2000 | vauthors = Gantar M |journal=Biology and Fertility of Soils |volume=32 |issue=3 |pages=250β255 |bibcode=2000BioFS..32..250G }}</ref><ref name=Treves2016>{{cite journal | vauthors = Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H, Berkowicz SM, Giordano M, Norici A, Shotland Y, Ohad I, Kaplan A | display-authors = 6 | title = The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance | journal = The New Phytologist | volume = 210 | issue = 4 | pages = 1229β1243 | date = June 2016 | pmid = 26853530 | doi = 10.1111/nph.13870 | doi-access = free | bibcode = 2016NewPh.210.1229T }}</ref><ref>{{cite journal | vauthors = Zhu H, Li S, Hu Z, Liu G | title = Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene | journal = BMC Plant Biology | volume = 18 | issue = 1 | pages = 365 | date = December 2018 | pmid = 30563464 | pmc = 6299628 | doi = 10.1186/s12870-018-1588-7 | doi-access = free | bibcode = 2018BMCPB..18..365Z }}</ref> Cyanobacteria can enter the plant through the [[stomata]] and colonize the intercellular space, forming loops and intracellular coils.<ref>{{cite journal |doi=10.1016/j.revpalbo.2008.06.006 |title=Endophytic cyanobacteria in a 400-million-yr-old land plant: A scenario for the origin of a symbiosis? |year=2009 | vauthors = Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N |journal=[[Review of Palaeobotany and Palynology]] |volume=153 |issue=1β2 |pages=62β69|bibcode=2009RPaPa.153...62K }}</ref> ''[[Anabaena]]'' spp. colonize the roots of wheat and cotton plants.<ref>{{cite journal | vauthors = Karthikeyan N, Prasanna R, Sood A, Jaiswal P, Nayak S, Kaushik BD | title = Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere | journal = Folia Microbiologica | volume = 54 | issue = 1 | pages = 43β51 | year = 2009 | pmid = 19330544 | doi = 10.1007/s12223-009-0007-8 }}</ref><ref name=Babu2015>{{cite journal |doi=10.1007/s10811-014-0322-6 |title=Analysing the colonisation of inoculated cyanobacteria in wheat plants using biochemical and molecular tools |year=2015 | vauthors = Babu S, Prasanna R, Bidyarani N, Singh R |journal=Journal of Applied Phycology |volume=27 |issue=1 |pages=327β338 |bibcode=2015JAPco..27..327B }}</ref><ref name=Bidyarani2015>{{cite journal | vauthors = Bidyarani N, Prasanna R, Chawla G, Babu S, Singh R | title = Deciphering the factors associated with the colonization of rice plants by cyanobacteria | journal = Journal of Basic Microbiology | volume = 55 | issue = 4 | pages = 407β419 | date = April 2015 | pmid = 25515189 | doi = 10.1002/jobm.201400591 }}</ref> ''[[Calothrix]]'' sp. has also been found on the root system of wheat.<ref name=Babu2015 /><ref name=Bidyarani2015 /> [[Monocot]]s, such as wheat and rice, have been colonised by ''[[Nostoc]]'' spp.,<ref name=Gantar1991>{{cite journal |doi=10.1111/j.1469-8137.1991.tb00031.x |title=Colonization of wheat (Triticum vulgare L.) by N2-fixing cyanobacteria: II. An ultrastructural study |year=1991 | vauthors = Gantar M, Kerby NW, Rowell P |journal=[[New Phytologist]] |volume=118 |issue=3 |pages=485β492 |doi-access=free|bibcode=1991NewPh.118..485G }}</ref><ref>{{cite journal |doi=10.1007/s11104-010-0488-x |title=Association of non-heterocystous cyanobacteria with crop plants |year=2010 | vauthors = Ahmed M, Stal LJ, Hasnain S |journal=[[Plant and Soil]] |volume=336 |issue=1β2 |pages=363β375 |bibcode=2010PlSoi.336..363A |url=http://dare.uva.nl/personal/pure/en/publications/association-of-nonheterocystous-cyanobacteria-with-crop-plants(a90f9b12-6bd1-47cc-87c4-389ab649d969).html }}</ref><ref>{{cite journal | vauthors = Hussain A, Hamayun M, Shah ST | title = Root colonization and phytostimulation by phytohormones producing entophytic Nostoc sp. AH-12 | journal = Current Microbiology | volume = 67 | issue = 5 | pages = 624β630 | date = November 2013 | pmid = 23794014 | doi = 10.1007/s00284-013-0408-4 }}</ref><ref>{{cite journal | vauthors = Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A | title = Effect of IAA on in vitro growth and colonization of Nostoc in plant roots | journal = Frontiers in Plant Science | volume = 6 | pages = 46 | year = 2015 | pmid = 25699072 | pmc = 4318279 | doi = 10.3389/fpls.2015.00046 | doi-access = free | bibcode = 2015FrPS....6...46H }}</ref> In 1991, Ganther and others isolated diverse [[heterocystous]] nitrogen-fixing cyanobacteria, including ''Nostoc'', ''Anabaena'' and ''[[Cylindrospermum]]'', from plant root and soil. Assessment of wheat seedling roots revealed two types of association patterns: loose colonization of root hair by ''Anabaena'' and tight colonization of the root surface within a restricted zone by ''Nostoc''.<ref name=Gantar1991 /><ref name=Lee2021 /> [[File:Cyanobacterial symbionts of Ornithocercus dinoflagellate 2.png|thumb|upright=2|left| {{center|'''Cyanobionts of ''Ornithocercus'' dinoflagellates'''{{hsp}}<ref name=Kim2020>{{cite journal | vauthors = Kim M, Choi DH, Park MG | title = Cyanobiont genetic diversity and host specificity of cyanobiont-bearing dinoflagellate Ornithocercus in temperate coastal waters | journal = Scientific Reports | volume = 11 | issue = 1 | pages = 9458 | date = May 2021 | pmid = 33947914 | pmc = 8097063 | doi = 10.1038/s41598-021-89072-z | bibcode = 2021NatSR..11.9458K }} {{Creative Commons text attribution notice|cc=by4|from this source=yes}}</ref>}} Live cyanobionts (cyanobacterial symbionts) belonging to ''[[Ornithocercus]]'' [[dinoflagellate]] host consortium<br />(a) ''O. magnificus'' with numerous cyanobionts present in the upper and lower girdle lists (black arrowheads) of the cingulum termed the symbiotic chamber.<br />(b) ''O. steinii'' with numerous cyanobionts inhabiting the symbiotic chamber.<br />(c) Enlargement of the area in (b) showing two cyanobionts that are being divided by binary transverse fission (white arrows).]] [[File:Cyanobacteria in symbiosis with a diatom.png|thumb|upright=1|right| {{center|[[Epiphytic]] ''[[Calothrix]] ''cyanobacteria (arrows) in symbiosis with a ''[[Chaetoceros]]'' diatom. Scale bar 50βΞΌm.}}]] {{clear left}} The relationships between [[cyanobiont]]s (cyanobacterial symbionts) and protistan hosts are particularly noteworthy, as some nitrogen-fixing cyanobacteria ([[diazotroph]]s) play an important role in [[Marine primary production|primary production]], especially in nitrogen-limited [[oligotrophic]] oceans.<ref>{{cite journal |doi=10.1126/science.276.5316.1221 |title=Trichodesmium, a Globally Significant Marine Cyanobacterium |year=1997 | vauthors = Capone DG |journal=Science |volume=276 |issue=5316 |pages=1221β1229}}</ref><ref>{{cite journal | vauthors = Falkowski PG, Barber RT, Smetacek V | title = Biogeochemical Controls and Feedbacks on Ocean Primary Production | journal = Science | volume = 281 | issue = 5374 | pages = 200β207 | date = July 1998 | pmid = 9660741 | doi = 10.1126/science.281.5374.200 }}</ref><ref>{{cite journal |doi=10.4319/lo.2007.52.4.1293 |title=CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry |year=2007 | vauthors = Hutchins DA, Fu FX, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR |author-link8=Margaret Mulholland |journal=[[Limnology and Oceanography]] |volume=52 |issue=4 |pages=1293β1304 |bibcode=2007LimOc..52.1293H |doi-access=free }}</ref> Cyanobacteria, mostly [[pico-]]sized ''[[Synechococcus]]'' and ''[[Prochlorococcus]]'', are ubiquitously distributed and are the most abundant photosynthetic organisms on Earth, accounting for a quarter of all carbon fixed in marine ecosystems.<ref name="Present and future global distribut"/><ref>{{cite journal | vauthors = Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F | title = Novel lineages of Prochlorococcus and Synechococcus in the global oceans | journal = The ISME Journal | volume = 6 | issue = 2 | pages = 285β297 | date = February 2012 | pmid = 21955990 | pmc = 3260499 | doi = 10.1038/ismej.2011.106 | bibcode = 2012ISMEJ...6..285H }}</ref><ref name="Partensky-1999"/> In contrast to free-living marine cyanobacteria, some cyanobionts are known to be responsible for nitrogen fixation rather than carbon fixation in the host.<ref>{{cite book |doi=10.1201/b13853 |title=Stress Biology of Cyanobacteria |date=2013 |publisher=CRC Press |isbn=978-0-429-10135-9 |editor-last1=Srivastava |editor-last2=Rai |editor-last3=Neilan |editor-first1=Ashish Kumar |editor-first2=Amar Nath |editor-first3=Brett A. }}{{pn|date=February 2025}}</ref><ref>{{cite journal | vauthors = Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP | display-authors = 6 | title = Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II | journal = Science | volume = 322 | issue = 5904 | pages = 1110β1112 | date = November 2008 | pmid = 19008448 | doi = 10.1126/science.1165340 | bibcode = 2008Sci...322.1110Z }}</ref> However, the physiological functions of most cyanobionts remain unknown. Cyanobionts have been found in numerous protist groups, including [[dinoflagellate]]s, [[tintinnid]]s, [[radiolarian]]s, [[amoebae]], [[diatom]]s, and [[haptophyte]]s.<ref>{{cite book |doi=10.1007/978-4-431-55130-0_19 |chapter=Photosymbiosis in Marine Planktonic Protists |title=Marine Protists |year=2015 | vauthors = Decelle J, Colin S, Foster RA |pages=465β500 |publisher=Springer |location=Tokyo |isbn=978-4-431-55129-4}}</ref><ref>{{cite journal | vauthors = Foster RA, Zehr JP | title = Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations | journal = Annual Review of Microbiology | volume = 73 | pages = 435β456 | date = September 2019 | issue = 1 | pmid = 31500535 | doi = 10.1146/annurev-micro-090817-062650 }}</ref> Among these cyanobionts, little is known regarding the nature (e.g., genetic diversity, host or cyanobiont specificity, and cyanobiont seasonality) of the symbiosis involved, particularly in relation to dinoflagellate host.<ref name=Kim2020 /> {{clear}}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cyanobacteria
(section)
Add topic