Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cubic equation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Trigonometric and hyperbolic solutions==<!-- linked from redirect [[Chebyshev cube root]] --> ===Trigonometric solution for three real roots=== When a cubic equation with real coefficients has three real roots, the formulas expressing these roots in terms of radicals involve complex numbers. [[Galois theory]] allows proving that when the three roots are real, and none is rational (''[[casus irreducibilis]]''), one cannot express the roots in terms of real radicals. Nevertheless, purely real expressions of the solutions may be obtained using [[trigonometry|trigonometric functions]], specifically in terms of [[cosine]]s and [[arccosine]]s.<ref>{{cite journal |last=Zucker |first=I.J. |date=July 2008 |title=The cubic equation — a new look at the irreducible case |journal=[[Mathematical Gazette]] |volume=92 |pages=264–268|doi=10.1017/S0025557200183135 |s2cid=125986006 }}</ref> More precisely, the roots of the [[#Depressed cubic|depressed cubic]] <math display="block">t^3 + pt + q = 0</math> are<ref name="crc">{{cite book |title=CRC Standard Mathematical Tables |editor-first=Samuel |editor-last=Shelbey |year=1975 |publisher=CRC Press |isbn=0-87819-622-6 |url=https://archive.org/details/crcstandardmathe00selb }}</ref> <math display="block">t_k = 2\,\sqrt{-\frac{p}{3}}\,\cos\left[\,\frac{1}{3} \arccos\left(\frac{3q}{2p}\sqrt{\frac{-3}{p}}\,\right) - \frac{2\pi k}{3}\,\right] \qquad \text{for } k=0,1,2.</math> This formula is due to [[François Viète]].<ref name=Nickalls>{{cite journal |last=Nickalls |first=R.W.D. |date=July 2006 |title=Viète, Descartes, and the cubic equation |journal=[[Mathematical Gazette]] |volume=90 |issue=518 |pages=203–208 |doi=10.1017/S0025557200179598 |s2cid=124980170 |url=https://www.nickalls.org/dick/papers/maths/descartes2006.pdf}}</ref> It is purely real when the equation has three real roots (that is <math>4p^3 + 27q^2 < 0</math>). Otherwise, it is still correct but involves complex cosines and arccosines when there is only one real root, and it is nonsensical (division by zero) when {{math|''p'' {{=}} 0}}. This formula can be straightforwardly transformed into a formula for the roots of a general cubic equation, using the back-substitution described in {{slink||Depressed cubic}}. The formula can be proved as follows: Starting from the equation {{math|''t''<sup>3</sup> + ''pt'' + ''q'' {{=}} 0}}, let us set {{nowrap| {{math|''t'' {{=}} ''u'' cos ''θ''}}.}} The idea is to choose {{mvar|u}} to make the equation coincide with the identity <math display="block">4\cos^3\theta - 3\cos\theta - \cos(3\theta) = 0.</math> For this, choose <math>u = 2\,\sqrt{-\frac{p}{3}}\,,</math> and divide the equation by <math>\frac{u^3}{4}.</math> This gives <math display="block">4\cos^3\theta - 3\cos\theta - \frac{3q}{2p}\,\sqrt{ \frac{-3}{p} } = 0.</math> Combining with the above identity, one gets <math display="block">\cos(3\theta) = \frac{3q}{2p}\sqrt{\frac{-3}{p}}\,,</math> and the roots are thus <math display="block">t_k = 2\,\sqrt{-\frac{p}{3}}\,\cos\left[ \frac{1}{3} \arccos\left( \frac{3q}{2p}\sqrt{\frac{-3}{p}} \right) - \frac{2\pi k}{3} \right] \qquad \text{for } k=0,1,2.</math> ===Hyperbolic solution for one real root=== When there is only one real root (and {{math|''p'' ≠ 0}}), this root can be similarly represented using [[hyperbolic function]]s, as<ref>These are Formulas (80) and (83) of Weisstein, Eric W. 'Cubic Formula'. From MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com/CubicFormula.html, rewritten for having a coherent notation.</ref><ref>Holmes, G. C., "The use of hyperbolic cosines in solving cubic polynomials", ''[[Mathematical Gazette]]'' 86. November 2002, 473–477.</ref> <math display="block">\begin{align} t_0 &= -2\frac{|q|}{q}\sqrt{-\frac{p}{3}}\cosh\left[\frac{1}{3}\operatorname{arcosh}\left(\frac{-3|q|}{2p}\sqrt{\frac{-3}{p}}\right)\right] \qquad \text{if } ~ 4 p^3 + 27 q^2 > 0 ~\text{ and }~ p < 0,\\ t_0 & = -2\sqrt{\frac{p}{3}}\sinh\left[\frac{1}{3}\operatorname{arsinh}\left(\frac{3q}{2p}\sqrt{\frac{3}{p}}\right)\right] \qquad \text{if } ~ p > 0.\end{align}</math> If {{math|''p'' ≠ 0}} and the inequalities on the right are not satisfied (the case of three real roots), the formulas remain valid but involve complex quantities. When {{math|''p'' {{=}} ±3}}, the above values of {{math|''t''<sub>0</sub>}} are sometimes called the '''Chebyshev cube root.'''<ref>Abramowitz, Milton; Stegun, Irene A., eds. ''Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'', Dover (1965), chap. 22 p. 773</ref> More precisely, the values involving cosines and hyperbolic cosines define, when {{math|''p'' {{=}} −3}}, the same [[analytic function]] denoted {{math|''C''<sub>1/3</sub>(''q'')}}, which is the proper Chebyshev cube root. The value involving hyperbolic sines is similarly denoted {{math|''S''<sub>1/3</sub>(''q'')}}, when {{math|''p'' {{=}} 3}}.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cubic equation
(section)
Add topic