Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Computational complexity
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Non-deterministic computation=== In a [[non-deterministic algorithm|non-deterministic model of computation]], such as [[non-deterministic Turing machine]]s, some choices may be done at some steps of the computation. In complexity theory, one considers all possible choices simultaneously, and the non-deterministic time complexity is the time needed, when the best choices are always done. In other words, one considers that the computation is done simultaneously on as many (identical) processors as needed, and the non-deterministic computation time is the time spent by the first processor that finishes the computation. This parallelism is partly amenable to [[quantum computing]] via superposed [[entangled state]]s in running specific [[quantum algorithms]], like e.g. [[Shor's algorithm|Shor's factorization]] of yet only small integers ({{as of|2018|03|lc=yes}}: 21 = 3 Γ 7). Even when such a computation model is not realistic yet, it has theoretical importance, mostly related to the [[P = NP]] problem, which questions the identity of the complexity classes formed by taking "polynomial time" and "non-deterministic polynomial time" as least upper bounds. Simulating an NP-algorithm on a deterministic computer usually takes "exponential time". A problem is in the complexity class [[NP (complexity)|NP]], if it may be solved in [[polynomial time]] on a non-deterministic machine. A problem is [[NP-complete]] if, roughly speaking, it is in NP and is not easier than any other NP problem. Many [[combinatorics|combinatorial]] problems, such as the [[Knapsack problem]], the [[travelling salesman problem]], and the [[Boolean satisfiability problem]] are NP-complete. For all these problems, the best known algorithm has exponential complexity. If any one of these problems could be solved in polynomial time on a deterministic machine, then all NP problems could also be solved in polynomial time, and one would have P = NP. {{As of|2017}} it is generally conjectured that {{nowrap|P β NP,}} with the practical implication that the worst cases of NP problems are intrinsically difficult to solve, i.e., take longer than any reasonable time span (decades!) for interesting lengths of input.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Computational complexity
(section)
Add topic