Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Chaos theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Infinite dimensional maps=== The straightforward generalization of coupled discrete maps<ref name="Moloney, J V 1986">{{cite journal |title=Solitary waves as fixed points of infinite-dimensional maps for an optical bistable ring cavity: Analysis |journal=Journal of Mathematical Physics|volume=29 |issue=1 |pages=63 |year=1988 |last1= Adachihara |first1=H |last2= McLaughlin |first2=D W |last3= Moloney |first3=J V |last4= Newell |first4=A C |doi=10.1063/1.528136 |bibcode=1988JMP....29...63A}}</ref> is based upon convolution integral which mediates interaction between spatially distributed maps: <math>\psi_{n+1}(\vec r,t) = \int K(\vec r - \vec r^{,},t) f [\psi_{n}(\vec r^{,},t) ]d {\vec r}^{,}</math>, where kernel <math>K(\vec r - \vec r^{,},t)</math> is propagator derived as Green function of a relevant physical system,<ref name="Okulov, A Yu 1988">{{cite book |chapter=Spatiotemporal dynamics of a wave packet in nonlinear medium and discrete maps |title=Proceedings of the Lebedev Physics Institute |language=ru |editor=N.G. Basov |publisher=Nauka |lccn=88174540 |volume=187 |pages=202–222 |year=1988 |last1= Okulov |first1=A Yu |last2=Oraevskiĭ |first2=A N }}</ref> <math> f [\psi_{n}(\vec r,t) ] </math> might be logistic map alike <math> \psi \rightarrow G \psi [1 - \tanh (\psi)]</math> or [[complex map]]. For examples of complex maps the [[Julia set]] <math> f[\psi] = \psi^2</math> or [[Ikeda map]] <math> \psi_{n+1} = A + B \psi_n e^{i (|\psi_n|^2 + C)} </math> may serve. When wave propagation problems at distance <math>L=ct</math> with wavelength <math>\lambda=2\pi/k</math> are considered the kernel <math>K</math> may have a form of Green function for [[Schrödinger equation]]:.<ref name="Okulov, A Yu 2000">{{cite journal |title=Spatial soliton laser: geometry and stability |journal=Optics and Spectroscopy|volume=89 |issue=1 |pages=145–147 |year=2000 |last1= Okulov |first1=A Yu|s2cid=122790937|doi=10.1134/BF03356001 |bibcode=2000OptSp..89..131O}}</ref><ref name="Okulov, A Yu 2020">{{cite journal |title=Structured light entities, chaos and nonlocal maps |journal=Chaos, Solitons & Fractals|volume=133 |issue=4|page=109638 |year=2020|last1= Okulov |first1=A Yu|doi=10.1016/j.chaos.2020.109638|arxiv=1901.09274|bibcode=2020CSF...13309638O|s2cid=118828500}}</ref> <math> K(\vec r - \vec r^{,},L) = \frac {ik\exp[ikL]}{2\pi L}\exp[\frac {ik|\vec r-\vec r^{,}|^2}{2 L} ]</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Chaos theory
(section)
Add topic