Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Centromere
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Holocentric === {{Main|Holocentric chromosome}} Unlike monocentric chromosomes, holocentric chromosomes have no distinct primary constriction when viewed at mitosis. Instead, spindle fibers attach along almost the entire (Greek: holo-) length of the chromosome. In holocentric chromosomes centromeric proteins, such as [[CENPA]] (CenH3) are spread over the whole chromosome.<ref name="mono">{{cite journal | vauthors = Neumann P, Navrátilová A, Schroeder-Reiter E, Koblížková A, Steinbauerová V, Chocholová E, Novák P, Wanner G, Macas J | display-authors = 6 | title = Stretching the rules: monocentric chromosomes with multiple centromere domains | journal = PLOS Genetics | volume = 8 | issue = 6 | pages = e1002777 | year = 2012 | pmid = 22737088 | pmc = 3380829 | doi = 10.1371/journal.pgen.1002777 | doi-access = free }}</ref> The nematode, [[Caenorhabditis elegans]], is a well-known example of an organism with holocentric chromosomes,<ref>{{cite journal | vauthors = Dernburg AF | title = Here, there, and everywhere: kinetochore function on holocentric chromosomes | journal = The Journal of Cell Biology | volume = 153 | issue = 6 | pages = F33–F38 | date = June 2001 | pmid = 11402076 | pmc = 2192025 | doi = 10.1083/jcb.153.6.F33 }}</ref> but this type of centromere can be found in various species, plants, and animals, across eukaryotes. Holocentromeres are actually composed of multiple distributed centromere units that form a line-like structure along the chromosomes during mitosis.<ref>{{cite journal | vauthors = Marques A, Ribeiro T, Neumann P, Macas J, Novák P, Schubert V, Pellino M, Fuchs J, Ma W, Kuhlmann M, Brandt R, Vanzela AL, Beseda T, Šimková H, Pedrosa-Harand A, Houben A | display-authors = 6 | title = Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 112 | issue = 44 | pages = 13633–13638 | date = November 2015 | pmid = 26489653 | pmc = 4640781 | doi = 10.1073/pnas.1512255112 | bibcode = 2015PNAS..11213633M | doi-access = free }}</ref> Alternative or nonconventional strategies are deployed at meiosis to achieve the homologous chromosome pairing and segregation needed to produce viable gametes or gametophytes for sexual reproduction. Different types of holocentromeres exist in different species, namely with or without centromeric repetitive DNA sequences and with or without [[CENPA|CenH3]]. Holocentricity has evolved at least 13 times independently in various green algae, protozoans, invertebrates, and different plant families.<ref>{{cite journal | vauthors = Melters DP, Paliulis LV, Korf IF, Chan SW | title = Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis | journal = Chromosome Research | volume = 20 | issue = 5 | pages = 579–593 | date = July 2012 | pmid = 22766638 | doi = 10.1007/s10577-012-9292-1 | s2cid = 3351527 | doi-access = free }}</ref> Contrary to monocentric species where acentric fragments usually become lost during cell division, the breakage of holocentric chromosomes creates fragments with normal spindle fiber attachment sites.<ref>{{Cite journal | author1 = Hughes-Schrader S| author-link1 =Sally Hughes-Schrader| author2 =Ris H |date=August 1941 |title=The diffuse spindle attachment of coccids, verified by the mitotic behavior of induced chromosome fragments |url=https://onlinelibrary.wiley.com/doi/10.1002/jez.1400870306 |journal=Journal of Experimental Zoology |language=en |volume=87 |issue=3 |pages=429–456 |doi=10.1002/jez.1400870306 |issn=0022-104X}}</ref> Because of this, organisms with holocentric chromosomes can more rapidly evolve karyotype variation, able to heal fragmented chromosomes through subsequent addition of telomere caps at the sites of breakage.<ref>{{cite journal | vauthors = Jankowska M, Fuchs J, Klocke E, Fojtová M, Polanská P, Fajkus J, Schubert V, Houben A | display-authors = 6 | title = Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution | journal = Chromosoma | volume = 124 | issue = 4 | pages = 519–528 | date = December 2015 | pmid = 26062516 | doi = 10.1007/s00412-015-0524-y | s2cid = 2530401 }}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Centromere
(section)
Add topic