Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Carmichael number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Higher-order Carmichael numbers == Carmichael numbers can be generalized using concepts of [[abstract algebra]]. The above definition states that a composite integer ''n'' is Carmichael precisely when the ''n''th-power-raising function ''p''<sub>''n''</sub> from the [[ring (mathematics)|ring]] '''Z'''<sub>''n''</sub> of integers modulo ''n'' to itself is the identity function. The identity is the only '''Z'''<sub>''n''</sub>-[[algebra over a field|algebra]] [[endomorphism]] on '''Z'''<sub>''n''</sub> so we can restate the definition as asking that ''p''<sub>''n''</sub> be an algebra endomorphism of '''Z'''<sub>''n''</sub>. As above, ''p''<sub>''n''</sub> satisfies the same property whenever ''n'' is prime. The ''n''th-power-raising function ''p''<sub>''n''</sub> is also defined on any '''Z'''<sub>''n''</sub>-algebra '''A'''. A theorem states that ''n'' is prime if and only if all such functions ''p''<sub>''n''</sub> are algebra endomorphisms. In-between these two conditions lies the definition of '''Carmichael number of order m''' for any positive integer ''m'' as any composite number ''n'' such that ''p''<sub>''n''</sub> is an endomorphism on every '''Z'''<sub>''n''</sub>-algebra that can be generated as '''Z'''<sub>''n''</sub>-[[module (mathematics)|module]] by ''m'' elements. Carmichael numbers of order 1 are just the ordinary Carmichael numbers. === An order-2 Carmichael number === According to Howe, 17 · 31 · 41 · 43 · 89 · 97 · 167 · 331 is an order 2 Carmichael number. This product is equal to 443,372,888,629,441.<ref>{{cite journal |author = Everett W. Howe |title=Higher-order Carmichael numbers |journal=Mathematics of Computation |date=October 2000 |volume=69 |issue=232 |pages=1711–1719 |arxiv=math.NT/9812089 |jstor=2585091 |doi=10.1090/s0025-5718-00-01225-4|bibcode=2000MaCom..69.1711H |s2cid=6102830 }}</ref> === Properties === Korselt's criterion can be generalized to higher-order Carmichael numbers, as shown by Howe. A heuristic argument, given in the same paper, appears to suggest that there are infinitely many Carmichael numbers of order ''m'', for any ''m''. However, not a single Carmichael number of order 3 or above is known.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Carmichael number
(section)
Add topic