Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Capacitance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Capacitance in electronic and semiconductor devices== In electronic and semiconductor devices, transient or frequency-dependent current between terminals contains both conduction and displacement components. Conduction current is related to moving charge carriers (electrons, holes, ions, etc.), while displacement current is caused by a time-varying electric field. Carrier transport is affected by electric fields and by a number of physical phenomena - such as carrier drift and diffusion, trapping, injection, contact-related effects, impact ionization, etc. As a result, device [[admittance]] is frequency-dependent, and a simple electrostatic formula for capacitance <math>C = q/V,</math> is not applicable. A more general definition of capacitance, encompassing electrostatic formula, is:<ref name=LauxCapacitance>{{cite journal |first=S.E. |last=Laux |title=Techniques for small-signal analysis of semiconductor devices |journal=IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems |volume=4 |issue=4 |pages=472β481 |doi=10.1109/TCAD.1985.1270145 |date=Oct 1985|s2cid=13058472 }}</ref> <math display="block">C = \frac{\operatorname{Im}(Y(\omega))}{\omega} ,</math> where <math>Y(\omega)</math> is the device admittance, and <math>\omega</math> is the angular frequency. In general, capacitance is a function of frequency. At high frequencies, capacitance approaches a constant value, equal to "geometric" capacitance, determined by the terminals' geometry and dielectric content in the device. A paper by Steven Laux<ref name=LauxCapacitance /> presents a review of numerical techniques for capacitance calculation. In particular, capacitance can be calculated by a Fourier transform of a transient current in response to a step-like voltage excitation: <math display="block">C(\omega) = \frac{1}{\Delta V} \int_0^\infty [i(t)-i(\infty)] \cos (\omega t) dt.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Capacitance
(section)
Add topic