Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Calculus of variations
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Generalization to other boundary value problems === A more general expression for the potential energy of a membrane is <math display="block">V[\varphi] = \iint_D \left[ \frac{1}{2} \nabla \varphi \cdot \nabla \varphi + f(x,y) \varphi \right] \, dx\,dy \, + \int_C \left[ \frac{1}{2} \sigma(s) \varphi^2 + g(s) \varphi \right] \, ds.</math> This corresponds to an external force density <math>f(x,y)</math> in <math>D,</math> an external force <math>g(s)</math> on the boundary <math>C,</math> and elastic forces with modulus <math>\sigma(s)</math>acting on <math>C.</math> The function that minimizes the potential energy '''with no restriction on its boundary values''' will be denoted by <math>u.</math> Provided that <math>f</math> and <math>g</math> are continuous, regularity theory implies that the minimizing function <math>u</math> will have two derivatives. In taking the first variation, no boundary condition need be imposed on the increment <math>v.</math> The first variation of <math>V[u + \varepsilon v]</math> is given by <math display="block">\iint_D \left[ \nabla u \cdot \nabla v + f v \right] \, dx\, dy + \int_C \left[ \sigma u v + g v \right] \, ds = 0. </math> If we apply the divergence theorem, the result is <math display="block">\iint_D \left[ -v \nabla \cdot \nabla u + v f \right] \, dx \, dy + \int_C v \left[ \frac{\partial u}{\partial n} + \sigma u + g \right] \, ds =0. </math> If we first set <math>v = 0</math> on <math>C,</math> the boundary integral vanishes, and we conclude as before that <math display="block">- \nabla \cdot \nabla u + f =0 </math> in <math>D.</math> Then if we allow <math>v</math> to assume arbitrary boundary values, this implies that <math>u</math> must satisfy the boundary condition <math display="block">\frac{\partial u}{\partial n} + \sigma u + g =0, </math> on <math>C.</math> This boundary condition is a consequence of the minimizing property of <math>u</math>: it is not imposed beforehand. Such conditions are called '''natural boundary conditions'''. The preceding reasoning is not valid if <math>\sigma</math> vanishes identically on <math>C.</math> In such a case, we could allow a trial function <math>\varphi \equiv c,</math> where <math>c</math> is a constant. For such a trial function, <math display="block">V[c] = c\left[ \iint_D f \, dx\,dy + \int_C g \, ds \right].</math> By appropriate choice of <math>c,</math> <math>V</math> can assume any value unless the quantity inside the brackets vanishes. Therefore, the variational problem is meaningless unless <math display="block">\iint_D f \, dx\,dy + \int_C g \, ds =0.</math> This condition implies that net external forces on the system are in equilibrium. If these forces are in equilibrium, then the variational problem has a solution, but it is not unique, since an arbitrary constant may be added. Further details and examples are in Courant and Hilbert (1953).
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Calculus of variations
(section)
Add topic