Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Brine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Desalination == The [[desalination]] process consists of the separation of [[Salt (chemistry)|salts]] from an [[aqueous solution]] to obtain [[fresh water]] from a source of [[seawater]] or [[brackish water]]; and in turn, a discharge is generated, commonly called brine.<ref>{{Cite journal |last1=Mezher |first1=Toufic |last2=Fath |first2=Hassan |last3=Abbas |first3=Zeina |last4=Khaled |first4=Arslan |date=2011-01-31 |title=Techno-economic assessment and environmental impacts of desalination technologies |url=https://www.sciencedirect.com/science/article/pii/S0011916410006296 |journal=Desalination |volume=266 |issue=1 |pages=263–273 |doi=10.1016/j.desal.2010.08.035 |bibcode=2011Desal.266..263M |issn=0011-9164}}</ref> [[File:Brine Discharge (Iván Sola).jpg|thumb|Marine brine discharge in [[Chile]] with its surrounding [[marine life]]]] === Characteristics === The characteristics of the [[Discharge (hydrology)|discharge]] depend on different factors, such as the desalination [[technology]] used, [[salinity]] and [[Water quality|quality]] of the water used, [[Natural environment|environmental]] and [[Oceanography|oceanographic]] characteristics, desalination process carried out, among others.<ref name="Panagopoulos 111773">{{Cite journal |last1=Panagopoulos |first1=Argyris |last2=Haralambous |first2=Katherine-Joanne |date=December 2020 |title=Environmental impacts of desalination and brine treatment - Challenges and mitigation measures |url=https://doi.org/https://doi.org/10.1016/j.marpolbul.2020.111773 |journal=Marine Pollution Bulletin |volume=161 |issue=Pt B |pages=111773 |doi=10.1016/j.marpolbul.2020.111773 |pmid=33128985 |bibcode=2020MarPB.16111773P |issn=0025-326X}}</ref> The discharge of desalination plants by [[Seawater Reverse Osmosis|seawater reverse osmosis]] (SWRO), are mainly characterized by presenting a salinity concentration that can, in the worst case, double the salinity of the seawater used, and unlike of [[thermal desalination]] plants, have practically the same [[temperature]] and [[Oxygen saturation|dissolved oxygen]] as the seawater used.<ref name="Abessi 2018 259–303">{{Citation |last=Abessi |first=Ozeair |title=Brine Disposal and Management—Planning, Design, and Implementation |date=2018 |work=Sustainable Desalination Handbook |pages=259–303 |url=https://doi.org/10.1016/B978-0-12-809240-8.00007-1 |access-date=2024-04-09 |publisher=Elsevier |doi=10.1016/b978-0-12-809240-8.00007-1|isbn=978-0-12-809240-8 }}</ref><ref>{{Cite journal |last1=Mezher |first1=Toufic |last2=Fath |first2=Hassan |last3=Abbas |first3=Zeina |last4=Khaled |first4=Arslan |date=January 2011 |title=Techno-economic assessment and environmental impacts of desalination technologies |url=https://doi.org/10.1016/j.desal.2010.08.035 |journal=Desalination |volume=266 |issue=1–3 |pages=263–273 |doi=10.1016/j.desal.2010.08.035 |bibcode=2011Desal.266..263M |issn=0011-9164}}</ref> === Dissolved chemicals === The discharge could contain [[Trace element|trace chemical products]] used during the industrial treatments applies,such as [[Antiscalant|antiscalants]],<ref>{{Cite journal |last1=Chuan Yee Lee |first1=Brandon |last2=Tan |first2=Eileen |last3=Lu |first3=Yinghong |last4=Komori |first4=Hideyuki |last5=Pietsch |first5=Sara |last6=Goodlett |first6=Robb |last7=James |first7=Matt |date=2023-10-01 |title=Antiscalant and its deactivation in zero/minimized liquid discharge (ZLD/MLD) application in the mining sector – Opportunities, challenges and prospective |url=https://www.sciencedirect.com/science/article/pii/S0892687523002522 |journal=Minerals Engineering |volume=201 |pages=108238 |doi=10.1016/j.mineng.2023.108238 |bibcode=2023MiEng.20108238C |issn=0892-6875}}</ref> [[Coagulation (water treatment)|coagulants]], [[Flocculation|flocculants]] which are discarded together with the discharge, and which could affect the physical-chemical quality of the [[effluent]]. However, these are practically consumed during the process and the [[concentration]]s in the discharge are very low, which are practically [[Dilution (equation)|diluted]] during the discharge, without affecting [[marine ecosystem]]s.<ref>{{Cite journal |last1=Blanco-Murillo |first1=Fabio |last2=Marín-Guirao |first2=Lázaro |last3=Sola |first3=Iván |last4=Rodríguez-Rojas |first4=Fernanda |last5=Ruiz |first5=Juan M. |last6=Sánchez-Lizaso |first6=José Luis |last7=Sáez |first7=Claudio A. |date=November 2023 |title=Desalination brine effects beyond excess salinity: Unravelling specific stress signaling and tolerance responses in the seagrass Posidonia oceanica. |url=https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140061 |journal=Chemosphere |volume=341 |pages=140061 |doi=10.1016/j.chemosphere.2023.140061 |pmid=37689149 |bibcode=2023Chmsp.34140061B |issn=0045-6535|hdl=10045/137033 |hdl-access=free }}</ref><ref name="Fernández-Torquemada 2019 27–37">{{Cite journal |last1=Fernández-Torquemada |first1=Yolanda |last2=Carratalá |first2=Adoración |last3=Sánchez Lizaso |first3=José Luis |date=2019 |title=Impact of brine on the marine environment and how it can be reduced |url=https://doi.org/10.5004/dwt.2019.24615 |journal=Desalination and Water Treatment |volume=167 |pages=27–37 |doi=10.5004/dwt.2019.24615|bibcode=2019DWatT.167...27F |hdl=10045/101370 |hdl-access=free }}</ref> === Heavy metals === The materials used in SWRO [[Desalination plant|plants]] are dominated by [[Nonmetal|non-metallic]] components and [[stainless steel]]s, since lower operating temperatures allow the construction of desalination plants with more [[Corrosion|corrosion-resistant]] [[coating]]s.<ref>{{Cite journal |last1=Lin |first1=Yung-Chang |last2=Chang-Chien |first2=Guo-Ping |last3=Chiang |first3=Pen-Chi |last4=Chen |first4=Wei-Hsiang |last5=Lin |first5=Yuan-Chung |date=August 2013 |title=Potential impacts of discharges from seawater reverse osmosis on Taiwan marine environment |url=https://doi.org/10.1016/j.desal.2013.05.009 |journal=Desalination |volume=322 |pages=84–93 |doi=10.1016/j.desal.2013.05.009 |bibcode=2013Desal.322...84L |issn=0011-9164}}</ref><ref name="Panagopoulos 111773"/> Therefore, the [[concentration]] values of heavy metals in the discharge of SWRO plants are much lower than the acute [[toxicity]] levels to generate [[Environmental issues|environmental impacts]] on marine ecosystems.<ref>{{Citation |last1=Gheorghe |first1=Stefania |title=Metals Toxic Effects in Aquatic Ecosystems: Modulators of Water Quality |date=2017-01-18 |work=Water Quality |url=https://www.intechopen.com/chapters/52639 |access-date=2024-04-09 |publisher=IntechOpen |language=en |doi=10.5772/65744 |isbn=978-953-51-2882-3 |last2=Stoica |first2=Catalina |last3=Vasile |first3=Gabriela Geanina |last4=Nita-Lazar |first4=Mihai |last5=Stanescu |first5=Elena |last6=Lucaciu |first6=Irina Eugenia}}</ref><ref name="Panagopoulos 111773"/><ref>{{Cite journal |last1=Zhou |first1=Jin |last2=Chang |first2=Victor W.-C. |last3=Fane |first3=Anthony G. |date=January 2013 |title=An improved life cycle impact assessment (LCIA) approach for assessing aquatic eco-toxic impact of brine disposal from seawater desalination plants |url=https://doi.org/https://doi.org/10.1016/j.desal.2012.07.039 |journal=Desalination |volume=308 |pages=233–241 |doi=10.1016/j.desal.2012.07.039 |bibcode=2013Desal.308..233Z |issn=0011-9164}}</ref> === Discharge === The discharge is generally dumped back into the sea, through an underwater outfall or coastal release, due to its lower energy and economic cost compared to other discharge methods.<ref name="Fernández-Torquemada 2019 27–37"/><ref name="Missimer 198–215">{{Cite journal |last1=Missimer |first1=Thomas M. |last2=Maliva |first2=Robert G. |date=May 2018 |title=Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls |journal=Desalination |volume=434 |pages=198–215 |doi=10.1016/j.desal.2017.07.012 |bibcode=2018Desal.434..198M |issn=0011-9164|doi-access=free }}</ref> Due to its increase in salinity, the discharge has a greater [[density]] compared to the surrounding seawater. Therefore, when the discharge reaches the sea, it can form a saline plume that can tends to follow the [[Bathymetry|bathymetric]] line of the bottom until it is completely diluted.<ref name="Fernández-Torquemada 137–145">{{Cite journal |last1=Fernández-Torquemada |first1=Yolanda |last2=Gónzalez-Correa |first2=José Miguel |last3=Loya |first3=Angel |last4=Ferrero |first4=Luis Miguel |last5=Díaz-Valdés |first5=Marta |last6=Sánchez-Lizaso |first6=José Luis |date=May 2009 |title=Dispersion of brine discharge from seawater reverse osmosis desalination plants |url=http://www.tandfonline.com/doi/abs/10.5004/dwt.2009.576 |journal=Desalination and Water Treatment |language=en |volume=5 |issue=1–3 |pages=137–145 |doi=10.5004/dwt.2009.576 |bibcode=2009DWatT...5..137F |hdl=10045/11309 |issn=1944-3994|hdl-access=free }}</ref><ref>{{Cite journal |last1=Loya-Fernández |first1=Ángel |last2=Ferrero-Vicente |first2=Luis Miguel |last3=Marco-Méndez |first3=Candela |last4=Martínez-García |first4=Elena |last5=Zubcoff Vallejo |first5=José Jacobo |last6=Sánchez-Lizaso |first6=José Luis |date=April 2018 |title=Quantifying the efficiency of a mono-port diffuser in the dispersion of brine discharges |url=https://doi.org/10.1016/j.desal.2017.11.014 |journal=Desalination |volume=431 |pages=27–34 |doi=10.1016/j.desal.2017.11.014 |bibcode=2018Desal.431...27L |issn=0011-9164}}</ref><ref>{{Cite journal |last1=Palomar |first1=P. |last2=Lara |first2=J.L. |last3=Losada |first3=I.J. |last4=Rodrigo |first4=M. |last5=Alvárez |first5=A. |date=March 2012 |title=Near field brine discharge modelling part 1: Analysis of commercial tools |url=https://doi.org/10.1016/j.desal.2011.11.037 |journal=Desalination |volume=290 |pages=14–27 |doi=10.1016/j.desal.2011.11.037 |bibcode=2012Desal.290...14P |issn=0011-9164}}</ref> The distribution of the salt plume may depend on different factors, such as the [[Productive capacity|production capacity]] of the plant, the discharge method, the [[Oceanography|oceanographic]] and environmental conditions of the discharge point, among others.<ref name="Abessi 2018 259–303"/><ref name="Fernández-Torquemada 137–145"/><ref name="Missimer 198–215"/><ref name="Sola 111813">{{Cite journal |last1=Sola |first1=Iván |last2=Fernández-Torquemada |first2=Yolanda |last3=Forcada |first3=Aitor |last4=Valle |first4=Carlos |last5=del Pilar-Ruso |first5=Yoana |last6=González-Correa |first6=José M. |last7=Sánchez-Lizaso |first7=José Luis |date=December 2020 |title=Sustainable desalination: Long-term monitoring of brine discharge in the marine environment |url=https://doi.org/10.1016/j.marpolbul.2020.111813 |journal=Marine Pollution Bulletin |volume=161 |issue=Pt B |pages=111813 |doi=10.1016/j.marpolbul.2020.111813 |pmid=33157504 |bibcode=2020MarPB.16111813S |hdl=10045/110110 |issn=0025-326X|hdl-access=free }}</ref> === Marine environment === Brine discharge might lead to an increase in salinity above certain threshold levels that has the potential to affect [[Benthic zone|benthic communities]], especially those more sensitive to osmotic pressure, finally having an effect on their abundance and diversity.<ref>{{Cite journal |last1=de-la-Ossa-Carretero |first1=J. A. |last2=Del-Pilar-Ruso |first2=Y. |last3=Loya-Fernández |first3=A. |last4=Ferrero-Vicente |first4=L. M. |last5=Marco-Méndez |first5=C. |last6=Martinez-Garcia |first6=E. |last7=Giménez-Casalduero |first7=F. |last8=Sánchez-Lizaso |first8=J. L. |date=2016-02-15 |title=Bioindicators as metrics for environmental monitoring of desalination plant discharges |url=https://www.sciencedirect.com/science/article/pii/S0025326X15302265 |journal=Marine Pollution Bulletin |volume=103 |issue=1 |pages=313–318 |doi=10.1016/j.marpolbul.2015.12.023 |pmid=26781455 |bibcode=2016MarPB.103..313D |issn=0025-326X}}</ref><ref>{{Cite journal |last1=Del-Pilar-Ruso |first1=Yoana |last2=Martinez-Garcia |first2=Elena |last3=Giménez-Casalduero |first3=Francisca |last4=Loya-Fernández |first4=Angel |last5=Ferrero-Vicente |first5=Luis Miguel |last6=Marco-Méndez |first6=Candela |last7=de-la-Ossa-Carretero |first7=Jose Antonio |last8=Sánchez-Lizaso |first8=José Luis |date=2015-03-01 |title=Benthic community recovery from brine impact after the implementation of mitigation measures |url=https://www.sciencedirect.com/science/article/pii/S004313541400815X |journal=Water Research |volume=70 |pages=325–336 |doi=10.1016/j.watres.2014.11.036 |pmid=25543242 |bibcode=2015WatRe..70..325D |hdl=10045/44105 |issn=0043-1354|hdl-access=free }}</ref><ref>{{Cite journal |last1=Sánchez-Lizaso |first1=José Luis |last2=Romero |first2=Javier |last3=Ruiz |first3=Juanma |last4=Gacia |first4=Esperança |last5=Buceta |first5=José Luis |last6=Invers |first6=Olga |last7=Fernández Torquemada |first7=Yolanda |last8=Mas |first8=Julio |last9=Ruiz-Mateo |first9=Antonio |last10=Manzanera |first10=Marta |date=2008-03-01 |title=Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants |url=https://www.sciencedirect.com/science/article/pii/S0011916407007461 |journal=Desalination |series=European Desalination Society and Center for Research and Technology Hellas (CERTH), Sani Resort 22 –25 April 2007, Halkidiki, Greece |volume=221 |issue=1 |pages=602–607 |doi=10.1016/j.desal.2007.01.119 |bibcode=2008Desal.221..602S |issn=0011-9164}}</ref> However, if appropriate [[mitigation]] measures are applied, the potential environmental impacts of discharges from SWRO plants can be correctly minimized.<ref name="Fernández-Torquemada 2019 27–37"/><ref name="Sola 111813"/> Some examples can be found in countries such as [[Spain]], [[Israel]], [[Chile]] or [[Australia]], in which the mitigation measures adopted reduce the area affected by the discharge, guaranteeing a [[Sustainability|sustainable]] development of the desalination process without significant impacts on marine ecosystems.<ref name="Del-Pilar-Ruso 325–336">{{Cite journal |last1=Del-Pilar-Ruso |first1=Yoana |last2=Martinez-Garcia |first2=Elena |last3=Giménez-Casalduero |first3=Francisca |last4=Loya-Fernández |first4=Angel |last5=Ferrero-Vicente |first5=Luis Miguel |last6=Marco-Méndez |first6=Candela |last7=de-la-Ossa-Carretero |first7=Jose Antonio |last8=Sánchez-Lizaso |first8=José Luis |date=March 2015 |title=Benthic community recovery from brine impact after the implementation of mitigation measures |url=https://doi.org/10.1016/j.watres.2014.11.036 |journal=Water Research |volume=70 |pages=325–336 |doi=10.1016/j.watres.2014.11.036 |pmid=25543242 |bibcode=2015WatRe..70..325D |hdl=10045/44105 |issn=0043-1354|hdl-access=free }}</ref><ref>{{Cite journal |last1=Fernández-Torquemada |first1=Yolanda |last2=Carratalá |first2=Adoración |last3=Sánchez Lizaso |first3=José Luis |date=2019 |title=Impact of brine on the marine environment and how it can be reduced |url=http://www.deswater.com/DWT_abstracts/vol_167/167_2019_27.pdf |journal=Desalination and Water Treatment |volume=167 |pages=27–37 |doi=10.5004/dwt.2019.24615|bibcode=2019DWatT.167...27F |hdl=10045/101370 }}</ref><ref name="Kelaher 735–744">{{Cite journal |last1=Kelaher |first1=Brendan P. |last2=Clark |first2=Graeme F. |last3=Johnston |first3=Emma L. |last4=Coleman |first4=Melinda A. |date=2020-01-21 |title=Effect of Desalination Discharge on the Abundance and Diversity of Reef Fishes |url=https://pubs.acs.org/doi/10.1021/acs.est.9b03565 |journal=Environmental Science & Technology |language=en |volume=54 |issue=2 |pages=735–744 |doi=10.1021/acs.est.9b03565 |pmid=31849222 |bibcode=2020EnST...54..735K |issn=0013-936X}}</ref><ref>{{Cite journal |last1=Muñoz |first1=Pamela T. |last2=Rodríguez-Rojas |first2=Fernanda |last3=Celis-Plá |first3=Paula S. M. |last4=López-Marras |first4=Américo |last5=Blanco-Murillo |first5=Fabio |last6=Sola |first6=Iván |last7=Lavergne |first7=Céline |last8=Valenzuela |first8=Fernando |last9=Orrego |first9=Rodrigo |last10=Sánchez-Lizaso |first10=José Luis |last11=Sáez |first11=Claudio A. |date=2023 |title=Desalination effects on macroalgae (part b): Transplantation experiments at brine-impacted sites with Dictyota spp. from the Pacific Ocean and Mediterranean Sea |journal=Frontiers in Marine Science |volume=10 |doi=10.3389/fmars.2023.1042799 |doi-access=free |bibcode=2023FrMaS..1042799M |issn=2296-7745|hdl=10045/131985 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Rodríguez-Rojas |first1=Fernanda |last2=López-Marras |first2=Américo |last3=Celis-Plá |first3=Paula S.M. |last4=Muñoz |first4=Pamela |last5=García-Bartolomei |first5=Enzo |last6=Valenzuela |first6=Fernando |last7=Orrego |first7=Rodrigo |last8=Carratalá |first8=Adoración |last9=Sánchez-Lizaso |first9=José Luis |last10=Sáez |first10=Claudio A. |date=September 2020 |title=Ecophysiological and cellular stress responses in the cosmopolitan brown macroalga Ectocarpus as biomonitoring tools for assessing desalination brine impacts |url=https://doi.org/10.1016/j.desal.2020.114527 |journal=Desalination |volume=489 |pages=114527 |doi=10.1016/j.desal.2020.114527 |bibcode=2020Desal.48914527R |issn=0011-9164}}</ref><ref name="Sola 111813"/><ref>{{Cite journal |last1=Sola |first1=Iván |last2=Zarzo |first2=Domingo |last3=Carratalá |first3=Adoración |last4=Fernández-Torquemada |first4=Yolanda |last5=de-la-Ossa-Carretero |first5=José A. |last6=Del-Pilar-Ruso |first6=Yoana |last7=Sánchez-Lizaso |first7=José Luis |date=October 2020 |title=Review of the management of brine discharges in Spain |url=https://doi.org/10.1016/j.ocecoaman.2020.105301 |journal=Ocean & Coastal Management |volume=196 |pages=105301 |doi=10.1016/j.ocecoaman.2020.105301 |bibcode=2020OCM...19605301S |issn=0964-5691}}</ref> When noticeable effects have been detected on the [[Natural environment|environment]] surrounding discharge areas, it generally corresponds to old desalination plants in which the correct [[Mitigation|mitigation measures]] were not implemented.<ref>{{Cite journal |last1=Belatoui |first1=Abdelmalek |last2=Bouabessalam |first2=Hassiba |last3=Hacene |first3=Omar Rouane |last4=de-la-Ossa-Carretero |first4=Jose Antonio |last5=Martinez-Garcia |first5=Elena |last6=Sanchez-Lizaso |first6=Jose Luis |date=2017 |title=Environmental effects of brine discharge from two desalinations plants in Algeria (South Western Mediterranean) |url=https://doi.org/10.5004/dwt.2017.20812 |journal=Desalination and Water Treatment |volume=76 |pages=311–318 |doi=10.5004/dwt.2017.20812|bibcode=2017DWatT..76..311B }}</ref><ref name="Del-Pilar-Ruso 325–336"/><ref>{{Cite journal |last1=Fernández-Torquemada |first1=Yolanda |last2=González-Correa |first2=José Miguel |last3=Sánchez-Lizaso |first3=José Luis |date=January 2013 |title=Echinoderms as indicators of brine discharge impacts |url=https://www.tandfonline.com/doi/full/10.1080/19443994.2012.716609 |journal=Desalination and Water Treatment |language=en |volume=51 |issue=1–3 |pages=567–573 |doi=10.1080/19443994.2012.716609 |bibcode=2013DWatT..51..567F |hdl=10045/27557 |issn=1944-3994|hdl-access=free }}</ref> Some examples can be found in Spain, Australia or Chile, where it has been shown that saline plumes do not exceed values of 5% with respect to the natural salinity of the sea in a [[radius]] less than 100 m from the point of discharge when proper measures are adopted.<ref name="Kelaher 735–744"/><ref name="Sola 111813"/> === Mitigation measures === The mitigation measures that are typically employed to prevent negatively impact sensitive marine environment are listed below:<ref>{{Cite journal |last1=Sola |first1=Iván |last2=Fernández-Torquemada |first2=Yolanda |last3=Forcada |first3=Aitor |last4=Valle |first4=Carlos |last5=del Pilar-Ruso |first5=Yoana |last6=González-Correa |first6=José M. |last7=Sánchez-Lizaso |first7=José Luis |date=December 2020 |title=Sustainable desalination: Long-term monitoring of brine discharge in the marine environment |url=https://doi.org/10.1016/j.marpolbul.2020.111813 |journal=Marine Pollution Bulletin |volume=161 |issue=Pt B |pages=111813 |doi=10.1016/j.marpolbul.2020.111813 |pmid=33157504 |bibcode=2020MarPB.16111813S |hdl=10045/110110 |issn=0025-326X|hdl-access=free }}</ref><ref>{{Cite journal |last1=Sola |first1=Iván |last2=Sáez |first2=Claudio A. |last3=Sánchez-Lizaso |first3=José Luis |date=November 2021 |title=Evaluating environmental and socio-economic requirements for improving desalination development |url=https://doi.org/10.1016/j.jclepro.2021.129296 |journal=Journal of Cleaner Production |volume=324 |pages=129296 |doi=10.1016/j.jclepro.2021.129296 |bibcode=2021JCPro.32429296S |issn=0959-6526|hdl=10045/118667 |hdl-access=free }}</ref><ref>{{Cite journal |last1=Sola |first1=Iván |last2=Sánchez-Lizaso |first2=José Luis |last3=Muñoz |first3=Pamela T. |last4=García-Bartolomei |first4=Enzo |last5=Sáez |first5=Claudio A. |last6=Zarzo |first6=Domingo |date=October 2019 |title=Assessment of the Requirements within the Environmental Monitoring Plans Used to Evaluate the Environmental Impacts of Desalination Plants in Chile |journal=Water |language=en |volume=11 |issue=10 |pages=2085 |doi=10.3390/w11102085 |doi-access=free |bibcode=2019Water..11.2085S |issn=2073-4441|hdl=10045/97207 |hdl-access=free }}</ref> * A well-designed discharge mechanisms, employing the use of efficient [[Diffuser (sewage)|diffusers]] or [[Dilution (equation)|pre-dilution]] of discharges with seawater * An [[Ecosystem valuation|environmental evaluation]] study, which assesses the correct location of the discharge point, considering [[Geomorphology|geomorphological]] and oceanographic variables, such as [[Ocean current|currents]], bathymetry, and type of bottom, which favor a rapid [[Mixing (process engineering)|mixing]] process of the discharges; * The implementation of an adequate environmental [[surveillance]] program, which guarantees the correct operation of the desalination plants during their operational phase, allowing an accurate and early [[Diagnosis|diagnostics]] of potential environmental threats === Regulation === Currently, in many countries, such as [[Spain]], [[Israel]], [[Chile]] and [[Australia]], the development of a rigorous [[environmental impact assessment]] process is required, both for the construction and operational phases.<ref>{{Cite journal |last=Fuentes-Bargues |first=José Luis |date=August 2014 |title=Analysis of the process of environmental impact assessment for seawater desalination plants in Spain |url=https://doi.org/10.1016/j.desal.2014.05.032 |journal=Desalination |volume=347 |pages=166–174 |doi=10.1016/j.desal.2014.05.032 |bibcode=2014Desal.347..166F |issn=0011-9164}}</ref><ref>{{Citation |last1=Sadhwani Alonso |first1=J. Jaime |title=Environmental Regulations—Inland and Coastal Desalination Case Studies |date=2018 |work=Sustainable Desalination Handbook |pages=403–435 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128092408000101 |access-date=2024-04-10 |publisher=Elsevier |language=en |doi=10.1016/b978-0-12-809240-8.00010-1 |isbn=978-0-12-809240-8 |last2=Melián-Martel |first2=Noemi}}</ref><ref>{{Cite journal |last1=Sola |first1=Iván |last2=Sáez |first2=Claudio A. |last3=Sánchez-Lizaso |first3=José Luis |date=November 2021 |title=Evaluating environmental and socio-economic requirements for improving desalination development |url=https://doi.org/10.1016/j.jclepro.2021.129296 |journal=Journal of Cleaner Production |volume=324 |pages=129296 |doi=10.1016/j.jclepro.2021.129296 |bibcode=2021JCPro.32429296S |issn=0959-6526|hdl=10045/118667 |hdl-access=free }}</ref> During its development, the most important [[legal management]] tools are established within the local environmental regulation, to prevent and adopt mitigation measures that guarantee the sustainable development of desalination projects. This includes a series of administrative tools and periodic environmental monitoring, to adopt preventive, corrective and further monitoring measures of the state of the surrounding marine environment.<ref>{{Cite journal |last1=Elsaid |first1=Khaled |last2=Sayed |first2=Enas Taha |last3=Abdelkareem |first3=Mohammad Ali |last4=Baroutaji |first4=Ahmad |last5=Olabi |first5=A. G. |date=2020-10-20 |title=Environmental impact of desalination processes: Mitigation and control strategies |url=https://www.sciencedirect.com/science/article/pii/S0048969720336469 |journal=Science of the Total Environment |volume=740 |pages=140125 |doi=10.1016/j.scitotenv.2020.140125 |pmid=32927546 |bibcode=2020ScTEn.74040125E |issn=0048-9697}}</ref><ref>{{Citation |last1=Sadhwani Alonso |first1=J. Jaime |title=Chapter 10 - Environmental Regulations—Inland and Coastal Desalination Case Studies |date=2018-01-01 |work=Sustainable Desalination Handbook |pages=403–435 |editor-last=Gude |editor-first=Veera Gnaneswar |url=https://www.sciencedirect.com/science/article/pii/B9780128092408000101 |access-date=2024-04-10 |publisher=Butterworth-Heinemann |doi=10.1016/b978-0-12-809240-8.00010-1 |isbn=978-0-12-809240-8 |last2=Melián-Martel |first2=Noemi}}</ref> Under the context of this environmental assessment process, numerous countries require compliance with an [[Environmental Monitoring Program]] (PVA), in order to evaluate the effectiveness of the preventive and corrective measures established during the environmental assessment process, and thus guarantee the operation of desalination plants without producing significant environmental impacts.<ref name=":0">{{Cite journal |last1=Sola |first1=Iván |last2=Sánchez-Lizaso |first2=José Luis |last3=Muñoz |first3=Pamela T. |last4=García-Bartolomei |first4=Enzo |last5=Sáez |first5=Claudio A. |last6=Zarzo |first6=Domingo |date=October 2019 |title=Assessment of the Requirements within the Environmental Monitoring Plans Used to Evaluate the Environmental Impacts of Desalination Plants in Chile |journal=Water |language=en |volume=11 |issue=10 |pages=2085 |doi=10.3390/w11102085 |doi-access=free |bibcode=2019Water..11.2085S |issn=2073-4441|hdl=10045/97207 |hdl-access=free }}</ref><ref name=":1">{{Cite journal |last1=Sola |first1=Iván |last2=Zarzo |first2=Domingo |last3=Sánchez-Lizaso |first3=José Luis |date=2019-12-01 |title=Evaluating environmental requirements for the management of brine discharges in Spain |url=https://www.sciencedirect.com/science/article/pii/S0011916419312111 |journal=Desalination |volume=471 |pages=114132 |doi=10.1016/j.desal.2019.114132 |bibcode=2019Desal.47114132S |hdl=10045/96149 |issn=0011-9164|hdl-access=free }}</ref> The PVAs establishes a series of mandatory requirements that are mainly related to the monitoring of discharge, using a series of measurements and [[Characterization (materials science)|characterizations]] based on physical-chemical and biological information.<ref name=":0" /><ref name=":1" /> In addition, the PVAs could also include different requirements related to monitoring the effects of seawater intake and those that may potentially be related to effects on the [[Terrestrial ecosystem|terrestrial environment]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Brine
(section)
Add topic