Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Bernoulli's inequality
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Alternative proofs== ===Arithmetic and geometric means=== An elementary proof for <math>0\le r\le 1</math> and <math>x \ge -1</math> can be given using [[Inequality of arithmetic and geometric means#Weighted AMβGM inequality|weighted AM-GM]]. Let <math>\lambda_1, \lambda_2</math> be two non-negative real constants. By weighted AM-GM on <math>1,1+x</math> with weights <math>\lambda_1, \lambda_2</math> respectively, we get :<math>\dfrac{\lambda_1\cdot 1 + \lambda_2\cdot (1+x)}{\lambda_1+\lambda_2}\ge \sqrt[\lambda_1+\lambda_2]{(1+x)^{\lambda_2}}.</math> Note that :<math>\dfrac{\lambda_1\cdot 1 + \lambda_2\cdot (1+x)}{\lambda_1+\lambda_2}=\dfrac{\lambda_1+\lambda_2+\lambda_2x}{\lambda_1+\lambda_2}=1+\dfrac{\lambda_2}{\lambda_1+\lambda_2}x</math> and :<math>\sqrt[\lambda_1+\lambda_2]{(1+x)^{\lambda_2}} = (1+x)^{\frac{\lambda_2}{\lambda_1+\lambda_2}},</math> so our inequality is equivalent to :<math>1 + \dfrac{\lambda_2}{\lambda_1+\lambda_2}x \ge (1+x)^{\frac{\lambda_2}{\lambda_1+\lambda_2}}.</math> After substituting <math>r = \dfrac{\lambda_2}{\lambda_1+\lambda_2}</math> (bearing in mind that this implies <math>0\le r\le 1</math>) our inequality turns into :<math>1+rx \ge (1+x)^r</math> which is Bernoulli's inequality for <math>0\le r\le 1</math>. The case <math>r\ge 1</math> can be derived from <math>0\le r\le 1</math> in the same way as the case <math>0\le r\le 1</math> can be derived from <math>r\ge 1</math>, see above "Generalization of exponent". ===Geometric series=== Bernoulli's inequality {{NumBlk|:|<math>(1+x)^r \ge 1+rx </math>|1}} is equivalent to {{NumBlk|:|<math>(1+x)^r - 1-rx \ge 0,</math>|2}} and by the formula for [[geometric series]] (using ''y'' = 1 + ''x'') we get {{NumBlk|:|<math> (1+x)^r - 1 = y^r-1 = \left(\sum^{r-1}_{k=0}y^k\right) \cdot (y-1) = \left(\sum^{r-1}_{k=0}(1+x)^k\right)\cdot x</math>|3}} which leads to {{NumBlk|:|<math>(1+x)^r - 1-rx = \left(\left(\sum^{r-1}_{k=0}(1+x)^k\right) - r\right)\cdot x = \left(\sum^{r-1}_{k=0}\left((1+x)^k-1\right)\right)\cdot x \ge 0.</math>|{{EquationRef|4}}}} Now if <math>x \ge 0</math> then by monotony of the powers each summand <math>(1+x)^k - 1 = (1+x)^k - 1^k \ge 0</math>, and therefore their sum is greater <math>0</math> and hence the product on the [[Sides of an equation|LHS]] of ({{EquationNote|4}}). If <math> 0 \ge x\ge -2 </math> then by the same arguments <math>1\ge(1+x)^k</math> and thus all addends <math>(1+x)^k-1</math> are non-positive and hence so is their sum. Since the product of two non-positive numbers is non-negative, we get again ({{EquationNote|4}}). ===Binomial theorem=== One can prove Bernoulli's inequality for ''x'' β₯ 0 using the [[binomial theorem]]. It is true trivially for ''r'' = 0, so suppose ''r'' is a positive integer. Then <math>(1+x)^r = 1 + rx + \tbinom r2 x^2 + ... + \tbinom rr x^r.</math> Clearly <math>\tbinom r2 x^2 + ... + \tbinom rr x^r \ge 0,</math> and hence <math>(1+x)^r \ge 1+rx</math> as required. ===Using convexity=== For <math>0\neq x> -1</math> the function <math>h(\alpha)=(1+x)^\alpha</math> is strictly convex. Therefore, for <math>0<\alpha<1</math> holds <math>(1+x)^\alpha=h(\alpha)=h((1-\alpha)\cdot 0+\alpha\cdot 1)<(1-\alpha) h(0)+\alpha h(1)=1+\alpha x</math> and the reversed inequality is valid for <math>\alpha<0</math> and <math>\alpha>1</math>. Another way of using convexity is to re-cast the desired inequality to <math>\log (1 + x) \geq \frac{1}{r}\log( 1 + rx)</math> for real <math>r\geq 1</math> and real <math>x > -1/r</math>. This inequality can be proved using the fact that the <math>\log</math> function is concave, and then using Jensen's inequality in the form <math> \log( p \, a + (1-p)b ) \geq p\log(a) + (1-p)\log(b) </math> to give: <math>\log(1+x) = \log(\frac{1}{r}(1+rx)+\frac{r-1}{r}) \geq \frac{1}{r} \log (1+rx)+\frac{r-1}{r}\log 1 = \frac{1}{r} \log (1+rx) </math> which is the desired inequality.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Bernoulli's inequality
(section)
Add topic