Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Astronomical coordinate systems
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Equatorial β horizontal === Azimuth ({{mvar|A}}) is measured from the south point, turning positive to the west.<ref> {{cite book | last1 = Montenbruck | first1 = Oliver | last2 = Pfleger | first2 = Thomas | title = Astronomy on the Personal Computer | publisher = Springer-Verlag Berlin Heidelberg | year = 2000 | isbn = 978-3-540-67221-0}}, pp 35-37</ref> Zenith distance, the angular distance along the [[great circle]] from the [[zenith]] to a celestial object, is simply the [[Complementary angles|complementary angle]] of the altitude: {{math|90Β° β ''a''}}.<ref> {{cite book | last1 = U.S. Naval Observatory | first1=Nautical Almanac Office | first2 = H.M. Nautical Almanac Office | last2 = U.K. Hydrographic Office | title = The Astronomical Almanac for the Year 2010 | publisher = U.S. Govt. Printing Office | year = 2008 |isbn = 978-0160820083 |page=M18}} </ref> :<math>\begin{align} \tan\left(A\right) &= {\sin\left(h\right) \over \cos\left(h\right) \sin\left(\phi_\text{o}\right) - \tan\left(\delta\right) \cos\left(\phi_\text{o}\right)}; \qquad \begin{cases} \cos\left(a\right) \sin\left(A\right) = \cos\left(\delta\right) \sin\left(h\right) ;\\ \cos\left(a\right) \cos\left(A\right) = \cos\left(\delta\right) \cos\left(h\right) \sin\left(\phi_\text{o}\right) - \sin\left(\delta\right) \cos\left(\phi_\text{o}\right) \end{cases} \\[3pt] \sin\left(a\right) &= \sin\left(\phi_\text{o}\right) \sin\left(\delta\right) + \cos\left(\phi_\text{o}\right) \cos\left(\delta\right) \cos\left(h\right); \end{align}</math> In solving the {{math|tan(''A'')}} equation for {{math|''A''}}, in order to avoid the ambiguity of the [[arctangent]], use of the [[atan2|two-argument arctangent]], denoted {{math|atan2(''x'',''y'')}}, is recommended. The two-argument arctangent computes the arctangent of {{math|{{sfrac|''y''|''x''}}}}, and accounts for the quadrant in which it is being computed. Thus, consistent with the convention of azimuth being measured from the south and opening positive to the west, :<math>A = -\operatorname{atan2}(y,x)</math>, where :<math>\begin{align} x &= -\sin\left(\phi_\text{o}\right) \cos\left(\delta\right) \cos\left(h\right) + \cos\left(\phi_\text{o}\right) \sin\left(\delta\right) \\ y &= \cos\left(\delta\right) \sin\left(h\right) \end{align}</math>. If the above formula produces a negative value for {{math|''A''}}, it can be rendered positive by simply adding 360Β°. :<math>\begin{align} \begin{bmatrix} \cos\left(a\right) \cos\left(A\right) \\ \cos\left(a\right) \sin\left(A\right) \\ \sin\left(a\right) \end{bmatrix} &= \begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & -\cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ \cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(\delta\right)\cos\left(h\right) \\ \cos\left(\delta\right)\sin\left(h\right) \\ \sin\left(\delta\right) \end{bmatrix} \\ &= \begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & -\cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ \cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(\theta_L\right) & \sin\left(\theta_L\right) & 0 \\ \sin\left(\theta_L\right) & -\cos\left(\theta_L\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \cos\left(\delta\right)\cos\left(\alpha\right) \\ \cos\left(\delta\right)\sin\left(\alpha\right) \\ \sin\left(\delta\right) \end{bmatrix}; \\[6pt] \tan\left(h\right) &= {\sin\left(A\right) \over \cos\left(A\right) \sin\left(\phi_\text{o}\right) + \tan\left(a\right) \cos\left(\phi_\text{o}\right)}; \qquad \begin{cases} \cos\left(\delta\right) \sin\left(h\right) = \cos\left(a\right) \sin\left(A\right); \\ \cos\left(\delta\right) \cos\left(h\right) = \sin\left(a\right) \cos\left(\phi_\text{o}\right) + \cos\left(a\right) \cos\left(A\right) \sin\left(\phi_\text{o}\right) \end{cases} \\[3pt] \sin\left(\delta\right) &= \sin\left(\phi_\text{o}\right) \sin\left(a\right) - \cos\left(\phi_\text{o}\right) \cos\left(a\right) \cos\left(A\right); \end{align}</math>{{efn|Depending on the azimuth convention in use, the signs of {{math|cos ''A''}} and {{math|sin ''A''}} appear in all four different combinations. Karttunen et al.,<ref name=Karttunen/> Taff,<ref name=Taff/> and Roth<ref name=Roth/> define {{math|''A''}} clockwise from the south. Lang<ref name=Lang/> defines it north through east, Smart<ref name=Smart/> north through west. Meeus (1991),<ref name=Meeus/> p. 89: {{math|sin ''Ξ΄'' {{=}} sin ''Ο'' sin ''a'' β cos ''Ο'' cos ''a'' cos ''A''}}; ''Explanatory Supplement'' (1961),<ref name=ExplSupp/> p. 26: {{math|sin ''Ξ΄'' {{=}} sin ''a'' sin ''Ο'' + cos ''a'' cos ''A'' cos ''Ο''}}.}} Again, in solving the {{math|tan(''h'')}} equation for {{math|''h''}}, use of the two-argument arctangent that accounts for the quadrant is recommended. Thus, again consistent with the convention of azimuth being measured from the south and opening positive to the west, : <math>h = \operatorname{atan2}(y, x)</math>, where :<math>\begin{align} x &= \sin\left(\phi_\text{o}\right)\cos\left(a\right) \cos\left(A\right) + \cos\left(\phi_\text{o}\right)\sin\left(a\right) \\ y &= \cos\left(a\right)\sin\left(A\right) \\[3pt] \begin{bmatrix} \cos\left(\delta\right)\cos\left(h\right) \\ \cos\left(\delta\right)\sin\left(h\right) \\ \sin\left(\delta\right) \end{bmatrix} &= \begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & \cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ -\cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(a\right) \cos\left(A\right) \\ \cos\left(a\right) \sin\left(A\right) \\ \sin\left(a\right) \end{bmatrix} \\ \begin{bmatrix} \cos\left(\delta\right) \cos\left(\alpha\right) \\ \cos\left(\delta\right) \sin\left(\alpha\right) \\ \sin\left(\delta\right) \end{bmatrix} &= \begin{bmatrix} \cos\left(\theta_L\right) & \sin\left(\theta_L\right) & 0 \\ \sin\left(\theta_L\right) & -\cos\left(\theta_L\right) & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \sin\left(\phi_\text{o}\right) & 0 & \cos\left(\phi_\text{o}\right) \\ 0 & 1 & 0 \\ -\cos\left(\phi_\text{o}\right) & 0 & \sin\left(\phi_\text{o}\right) \end{bmatrix}\begin{bmatrix} \cos\left(a\right) \cos\left(A\right) \\ \cos\left(a\right) \sin\left(A\right) \\ \sin\left(a\right) \end{bmatrix}. \end{align}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Astronomical coordinate systems
(section)
Add topic