Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Assembly language
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===={{anchor|Mnemonics}}Opcode mnemonics and extended mnemonics==== Instructions (statements) in assembly language are generally very simple, unlike those in [[high-level programming language|high-level languages]]. Generally, a mnemonic is a symbolic name for a single executable machine language instruction (an [[opcode]]), and there is at least one opcode mnemonic defined for each machine language instruction. Each instruction typically consists of an ''operation'' or ''opcode'' plus zero or more ''[[operand]]s''. Most instructions refer to a single value or a pair of values. Operands can be immediate (value coded in the instruction itself), registers specified in the instruction or implied, or the addresses of data located elsewhere in storage. This is determined by the underlying processor architecture: the assembler merely reflects how this architecture works. ''Extended mnemonics'' are often used to specify a combination of an opcode with a specific operand, e.g., the System/360 assemblers use {{code|B}} as an extended mnemonic for {{code|BC}} with a mask of 15 and {{code|NOP}} ("NO OPeration" β do nothing for one step) for {{code|BC}} with a mask of 0. ''Extended mnemonics'' are often used to support specialized uses of instructions, often for purposes not obvious from the instruction name. For example, many CPU's do not have an explicit NOP instruction, but do have instructions that can be used for the purpose. In 8086 CPUs the instruction {{code|2=asm|xchg ax,ax}} is used for {{code|nop}}, with {{code|nop}} being a pseudo-opcode to encode the instruction {{code|2=asm|xchg ax,ax}}. Some disassemblers recognize this and will decode the {{code|2=asm|xchg ax,ax}} instruction as {{code|nop}}. Similarly, IBM assemblers for [[IBM System/360|System/360]] and [[IBM System/370|System/370]] use the extended mnemonics {{code|NOP}} and {{code|NOPR}} for {{code|BC}} and {{code|BCR}} with zero masks. For the SPARC architecture, these are known as ''synthetic instructions''.<ref name="SPARC_1992"/> Some assemblers also support simple built-in macro-instructions that generate two or more machine instructions. For instance, with some Z80 assemblers the instruction {{code|ld hl,bc}} is recognized to generate {{code|ld l,c}} followed by {{code|ld h,b}}.<ref name="Moxham_1996"/> These are sometimes known as ''pseudo-opcodes''. Mnemonics are arbitrary symbols; in 1985 the [[Institute of Electrical and Electronics Engineers|IEEE]] published Standard 694 for a uniform set of mnemonics to be used by all assemblers.<ref>{{cite book |title=IEEE Std 694-1985: IEEE Standard for Microprocessor Assembly Language |publisher=IEEE Computer Society |date=1985 |isbn=0-7381-2752-3 |oclc=1415906564 }}</ref> The standard has since been withdrawn.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Assembly language
(section)
Add topic