Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Antiprism
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Number of uniform crossed antiprisms==== If the notation {{math|(''p''/''q'')}} is used for an antiprism, then for {{math|''q'' > ''p''/2}} the antiprism is crossed (by definition) and for {{math|''q'' < ''p''/2}} is not. In this section all antiprisms are assumed to be non-degenerate, i.e. {{math|''p'' β₯ 3}}, {{math|''q'' β ''p''/2}}. Also, the condition {{math|(''p'',''q'') {{=}} 1}} ({{mvar|p}} and {{mvar|q}} are relatively prime) holds, as compounds are excluded from counting. The number of uniform crossed antiprisms for fixed {{mvar|p}} can be determined using simple inequalities. The condition on possible {{mvar|q}} is : {{math|{{sfrac|''p''|2}} < ''q'' < {{sfrac|2|3}} ''p''}} and {{math|1=(''p'',''q'') = 1.}} Examples: * {{mvar|''p''}} = 3: {{sfrac|''p''|2}} = 1.5 and {{sfrac|2|3}} {{mvar|p}} = 2, so 2 β€ {{mvar|q}} β€ 1 β a uniform triangular crossed antiprism does not exist. * {{mvar|''p''}} = 5: {{sfrac|''p''|2}} = 2.5 and {{sfrac|2|3}} {{mvar|p}} = {{sfrac|10|3}} = {{sfrac|3|1|3}}, so 3 β€ {{mvar|q}} β€ 3 β one antiprism of the type (5/3) can be uniform. * {{mvar|''p''}} = 29: {{sfrac|''p''|2}} = 14.5 and {{sfrac|2|3}} {{mvar|p}} = {{sfrac|58|3}} = {{sfrac|19|1|3}}, 15 β€ {{mvar|q}} β€ 19 β there are five possibilities shown in the rightmost column, below the (29/1) convex antiprism, on the image above. * {{mvar|''p''}} = 15: {{sfrac|''p''|2}} = 7.5 and {{sfrac|2|3}} {{mvar|p}} = 10, 8 β€ {{mvar|q}} β€ 9 β antiprism with {{mvar|q}} = 8 is a solution, but {{mvar|q}} = 9 must be rejected, as (15,9) = 3 and {{sfrac|15|9}} = {{sfrac|5|3}}. The antiprism (15/9) is a compound of three antiprisms (5/3). Since 9 satisfies the inequalities, the compound can be uniform, and if it is, then its parts must be. Indeed, the antiprism (5/3) can be uniform by example 2. In the first column of the following table, the symbols are Schoenflies, Coxeter, and orbifold notation, in this order. {| class="wikitable mw-collapsible mw-collapsed" style="text-align:center" |+ class="nowrap"| Star ({{math|''p''/''q''}})-antiprisms by symmetry, for {{math|''p'' β€ 12}} ! [[List of spherical symmetry groups|Symmetry group]] ! colspan=4 | Uniform stars ! Right stars |- ! {{math|D<sub>3h</sub><br>[2,3]<br>(2*3)}} | colspan=4 | | [[Image:Crossed triangular antiprism.svg|64px]]<br>3.3/2.3.3<br>[[Crossed triangular antiprism]] |- ! {{math|D<sub>4d</sub><BR>[2<sup>+</sup>,8]<BR>(2*4)}} | colspan=4 | | [[Image:Crossed square antiprism.png|64px]]<BR>3.3/2.3.4<br>[[Crossed square antiprism]] |- ! {{math|D<sub>5h</sub><BR>[2,5]<BR>(*225)}} | [[Image:Pentagrammic antiprism.png|64px]]<BR>3.3.3.5/2<br>[[Pentagrammic antiprism]] | colspan=3 | | [[Image:Crossed pentagonal antiprism.png|64px]]<BR>3.3/2.3.5<br>[[Crossed pentagonal antiprism]] |- ! {{math|D<sub>5d</sub><BR>[2<sup>+</sup>,10]<BR>(2*5)}} | [[Image:Pentagrammic crossed antiprism.png|64px]]<BR>3.3.3.5/3<br>[[Pentagrammic crossed-antiprism]] |- ! {{math|D<sub>6d</sub><BR>[2<sup>+</sup>,12]<BR>(2*6)}} | colspan=4 | | [[Image:Crossed hexagonal antiprism.png|64px]]<BR>3.3/2.3.6<br>[[Crossed hexagonal antiprism]] |- ! {{math|D<sub>7h</sub><BR>[2,7]<BR>(*227)}} | [[Image:Antiprism 7-2.png|64px]]<BR>3.3.3.7/2<br>Heptagrammic antiprism (7/2) | [[Image:Antiprism 7-4.png|64px]]<BR>3.3.3.7/4<br>Heptagrammic crossed antiprism (7/4) |- ! {{math|D<sub>7d</sub><BR>[2<sup>+</sup>,14]<BR>(2*7)}} | [[Image:Antiprism 7-3.png|64px]]<BR>3.3.3.7/3<br>Heptagrammic antiprism (7/3) |- ! {{math|D<sub>8d</sub><BR>[2<sup>+</sup>,16]<BR>(2*8)}} | [[Image:Antiprism 8-3.png|64px]]<BR>3.3.3.8/3<br>[[Octagrammic antiprism]] | [[Image:Antiprism 8-5.png|64px]]<BR>3.3.3.8/5<br>[[Octagrammic crossed-antiprism]] |- ! {{math|D<sub>9h</sub><BR>[2,9]<BR>(*229)}} | [[Image:Antiprism 9-2.png|64px]]<BR>3.3.3.9/2<br>[[Enneagrammic antiprism (9/2)]] | [[Image:Antiprism 9-4.png|64px]]<BR>3.3.3.9/4<br>[[Enneagrammic antiprism (9/4)]] |- ! {{math|D<sub>9d</sub><BR>[2<sup>+</sup>,18]<BR>(2*9)}} | [[Image:Antiprism 9-5.png|64px]]<BR>3.3.3.9/5<br>[[Enneagrammic crossed-antiprism]] |- ! {{math|D<sub>10d</sub><BR>[2<sup>+</sup>,20]<BR>(2*10)}} | [[Image:Antiprism 10-3.png|64px]]<BR>3.3.3.10/3<br>[[Decagrammic antiprism]] |- ! {{math|D<sub>11h</sub><BR>[2,11]<BR>(*2.2.11)}} | [[Image:Antiprism 11-2.png|64px]]<BR>3.3.3.11/2<br>Undecagrammic (11/2) | [[Image:Antiprism 11-4.png|64px]]<BR>3.3.3.11/4<br>Undecagrammic (11/4) | [[Image:Antiprism 11-6.png|64px]]<BR>3.3.3.11/6<br>Undecagrammic crossed (11/6) |- ! {{math|D<sub>11d</sub><BR>[2<sup>+</sup>,22]<BR>(2*11)}} | [[Image:Antiprism 11-3.png|64px]]<BR>3.3.3.11/3<br>Undecagrammic (11/3) | [[Image:Antiprism 11-5.png|64px]]<BR>3.3.3.11/5<br>Undecagrammic (11/5) | [[Image:Antiprism 11-7.png|64px]]<BR>3.3.3.11/7<br>Undecagrammic crossed (11/7) |- ! {{math|D<sub>12d</sub><BR>[2<sup>+</sup>,24]<BR>(2*12)}} | [[Image:Antiprism 12-5.png|64px]]<BR>3.3.3.12/5<br>Dodecagrammic | [[Image:Antiprism 12-7.png|64px]]<BR>3.3.3.12/7<br>Dodecagrammic crossed |- ! ... | ... |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Antiprism
(section)
Add topic