Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Analysis of variance
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Unit-treatment additivity==== In its simplest form, the assumption of unit-treatment additivity<ref group="nb">Unit-treatment additivity is simply termed additivity in most texts. Hinkelmann and Kempthorne add adjectives and distinguish between additivity in the strict and broad senses. This allows a detailed consideration of multiple error sources (treatment, state, selection, measurement and sampling) on page 161.</ref> states that the observed response <math>y_{i,j}</math> from experimental unit <math>i</math> when receiving treatment <math>j</math> can be written as the sum of the unit's response <math>y_i</math> and the treatment-effect <math> t_j</math>, that is <ref>Kempthorne (1979, p 30)</ref><ref name="Cox">Cox (1958, Chapter 2: Some Key Assumptions)</ref><ref>Hinkelmann and Kempthorne (2008, Volume 1, Throughout. Introduced in Section 2.3.3: Principles of experimental design; The linear model; Outline of a model)</ref> <math display="block">y_{i,j}=y_i+t_j.</math> The assumption of unit-treatment additivity implies that, for every treatment <math>j</math>, the <math>j</math>th treatment has exactly the same effect <math>t_j</math> on every experiment unit. The assumption of unit treatment additivity usually cannot be directly [[Falsifiability|falsified]], according to Cox and Kempthorne. However, many ''consequences'' of treatment-unit additivity can be falsified. For a randomized experiment, the assumption of unit-treatment additivity ''implies'' that the variance is constant for all treatments. Therefore, by [[contraposition]], a necessary condition for unit-treatment additivity is that the variance is constant. The use of unit treatment additivity and randomization is similar to the design-based inference that is standard in finite-population [[survey sampling]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Analysis of variance
(section)
Add topic