Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Algebraic geometry
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Cylindrical algebraic decomposition (CAD)=== CAD is an algorithm which was introduced in 1973 by G. Collins to implement with an acceptable complexity the [[Tarski–Seidenberg theorem]] on [[quantifier elimination]] over the real numbers. This theorem concerns the formulas of the [[first-order logic]] whose [[atomic formula]]s are polynomial equalities or inequalities between polynomials with real coefficients. These formulas are thus the formulas which may be constructed from the atomic formulas by the logical operators ''and'' (∧), ''or'' (∨), ''not'' (¬), ''for all'' (∀) and ''exists'' (∃). Tarski's theorem asserts that, from such a formula, one may compute an equivalent formula without quantifier (∀, ∃). The complexity of CAD is doubly exponential in the number of variables. This means that CAD allows, in theory, to solve every problem of real algebraic geometry which may be expressed by such a formula, that is almost every problem concerning explicitly given varieties and semi-algebraic sets. While Gröbner basis computation has doubly exponential complexity only in rare cases, CAD has almost always this high complexity. This implies that, unless if most polynomials appearing in the input are linear, it may not solve problems with more than four variables. Since 1973, most of the research on this subject is devoted either to improving CAD or finding alternative algorithms in special cases of general interest. As an example of the state of art, there are efficient algorithms to find at least a point in every connected component of a semi-algebraic set, and thus to test if a semi-algebraic set is empty. On the other hand, CAD is yet, in practice, the best algorithm to count the number of connected components.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Algebraic geometry
(section)
Add topic