Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Actinide
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Compounds == === Oxides and hydroxides === {| Class = "wikitable collapsible collapsed" style="text-align:center;" |+ Oxides of actinides<ref name="Himiya aktiniya" /><ref name="Himiya neptuniya" /><ref name="Himiya protaktiniya">{{cite book|author=E.S. Palshin|title=Analytical chemistry of protactinium|place=Moscow|publisher=Nauka|year=1968}}</ref><ref>Myasoedov, p. 88</ref><ref name="Tablitsa soedineniy" /> |- ! rowspan="2"|[[Chemical compounds|Compound]] ! rowspan="2"|Color ! rowspan="2"|Crystal symmetry, type ! colspan="3"|Lattice constants, Å ! rowspan="2"|Density, g/cm<sup>3</sup> ! rowspan="2"|Temperature, °C |- !''a'' !''b'' !''c'' |- | Ac<sub>2</sub>O<sub>3</sub>|| White|| Hexagonal, La<sub>2</sub>O<sub>3</sub>|| 4.07 ||-|| 6.29|| 9.19|| – |- | PaO<sub>2</sub>||-|| Cubic, CaF<sub>2</sub>|| 5.505 ||-||-||-||- |- | Pa<sub>2</sub>O<sub>5</sub>|| White|| cubic, CaF<sub>2</sub><br /> Cubic<br /> Tetragonal<br /> Hexagonal<br /> Rhombohedral <br />Orthorhombic|| 5.446<br /> 10.891<br /> 5.429<br /> 3.817<br /> 5.425<br /> 6.92|| -<br /> -<br /> -<br /> -<br /> -<br /> 4.02|| -<br /> 10.992<br /> 5.503<br /> 13.22<br /> -<br /> 4. 18 ||-|| 700<br /> 700–1100<br /> 1000<br /> 1000–1200<br /> 1240–1400<br /> – |- | ThO<sub>2</sub>|| Colorless|| Cubic|| 5.59 ||-||-|| 9.87|| – |- | UO<sub>2</sub>|| Black-brown|| Cubic|| 5.47 ||-||-|| 10.9|| – |- | NpO<sub>2</sub>|| Greenish-brown|| Cubic, CaF<sub>2</sub>|| 5.424 ||-||-|| 11.1|| – |- | PuO|| Black|| Cubic, NaCl|| 4.96 ||-||-|| 13.9|| – |- | PuO<sub>2</sub>|| Olive green|| Cubic|| 5.39 ||-||-|| 11.44|| – |- | Am<sub>2</sub>O<sub>3</sub>|| Red-brown<br /> Red-brown|| Cubic, Mn<sub>2</sub>O<sub>3</sub><br /> Hexagonal, La<sub>2</sub>O<sub>3</sub>|| 11.03<br /> 3.817 ||-||-<br /> 5.971|| 10.57<br /> 11.7|| – |- | AmO<sub>2</sub>|| Black|| Cubic, CaF<sub>2</sub>|| 5.376 ||-||-||-||- |- | Cm<sub>2</sub>O<sub>3</sub>|| White<ref>According to other sources, cubic sesquioxide of curium is olive-green. See {{cite web|url = http://www.xumuk.ru/encyklopedia/2248.html|title=Соединения curium site XuMuK.ru|language = ru|access-date =11 July 2010| archive-url= https://web.archive.org/web/20100818211138/http://www.xumuk.ru/encyklopedia/2248.html|archive-date=18 August 2010|url-status=live}}</ref><br /> -<br /> -|| Cubic, Mn<sub>2</sub>O<sub>2</sub><br /> Hexagonal, LaCl<sub>3</sub><br /> Monoclinic, Sm<sub>2</sub>O<sub>3</sub>|| 11.01<br /> 3.80<br /> 14.28|| -<br /> -<br /> 3.65|| -<br /> 6<br /> 8.9|| 11.7|| – |- | CmO<sub>2</sub>|| Black|| Cubic, CaF<sub>2</sub>|| 5.37 ||-||-||-||- |- | Bk<sub>2</sub>O<sub>3</sub>|| Light brown|| Cubic, Mn<sub>2</sub>O<sub>3</sub>|| 10.886||-||-||-||- |- | BkO<sub>2</sub>|| Red-brown|| Cubic, CaF<sub>2</sub>|| 5.33 ||-||-||-||- |- | Cf<sub>2</sub>O<sub>3</sub><ref>The atmosphere during the synthesis affects the lattice parameters, which might be due to non-stoichiometry as a result of oxidation or reduction of the trivalent californium. Main form is the cubic oxide of californium(III).</ref>|| Colorless <br />Yellowish<br /> -|| Cubic, Mn<sub>2</sub>O<sub>3</sub><br /> Monoclinic, Sm<sub>2</sub>O<sub>3</sub><br /> Hexagonal, La<sub>2</sub>O<sub>3</sub>|| 10.79<br /> 14.12<br /> 3.72|| -<br /> 3.59<br /> -|| -<br /> 8.80<br /> 5.96 ||-||- |- | CfO<sub>2</sub>|| Black|| Cubic|| 5.31 ||-||-||-||- |- | Es<sub>2</sub>O<sub>3</sub>||-|| Cubic, Mn<sub>2</sub>O<sub>3</sub><br /> Monoclinic <br /> Hexagonal, La<sub>2</sub>O<sub>3</sub>|| 10.07<br /> 14.1<br /> 3.7|| -<br /> 3.59<br /> -|| -<br /> 8.80<br /> 6 ||-||- |} {| class="wikitable collapsible collapsed" style="text-align:center" |+Approximate colors of actinide oxides<br />(most stable are bolded)<ref name=g1268>Greenwood, p. 1268</ref> ! Oxidation state | 89 || 90 || 91 || 92 || 93 || 94 || 95 || 96 || 97 || 98 ||99 |- | +3||'''Ac<sub>2</sub>O<sub>3</sub>'''|| || || || |bgcolor=black| <span style="color:white;">Pu<sub>2</sub>O<sub>3</sub></span> | style="background:#fa7;"| Am<sub>2</sub>O<sub>3</sub> | '''Cm<sub>2</sub>O<sub>3</sub>''' | style="background:#dfe111;"| Bk<sub>2</sub>O<sub>3</sub> | style="background:#cf0;"| '''Cf<sub>2</sub>O<sub>3</sub>''' | '''Es<sub>2</sub>O<sub>3</sub>''' |- | +4|| || '''ThO<sub>2</sub>''' |bgcolor=black| <span style="color:white;">PaO<sub>2</sub></span> | style="background:#765538;"| <span style="color:white;">UO<sub>2</sub></span> | style="background:#616639;"| '''NpO<sub>2</sub>''' | style="background:#e1bb11;"| '''PuO<sub>2</sub>''' |bgcolor=black| <span style="color:white;">'''AmO<sub>2</sub>'''</span> |bgcolor=black| <span style="color:white;">CmO<sub>2</sub></span> |bgcolor=brown| '''BkO<sub>2</sub>''' |bgcolor=black| <span style="color:white;">CfO<sub>2</sub></span> | |- | +5|| || | '''Pa<sub>2</sub>O<sub>5</sub>''' |bgcolor=black| <span style="color:white;">U<sub>2</sub>O<sub>5</sub></span> | style="background:#765538;"| <span style="color:white;">Np<sub>2</sub>O<sub>5</sub></span> || || || || || || |- | +5,+6 || || || | style="background:#0d5e35;"| <span style="color:white;">'''U<sub>3</sub>O<sub>8</sub>'''</span> || || || || || || || |- || +6|| || || | style="background:#f89d1a;"| UO<sub>3</sub> || || || || || || || |} {| Class = "wikitable collapsible" style="text-align: center" |+ Dioxides of some actinides |- | style="background:lightblue; text-align:left;"|[[Chemical formula]] | [[Thorium dioxide|ThO<sub>2</sub>]]|| [[Protactinium(IV) oxide|PaO<sub>2</sub>]]|| [[Uranium dioxide|UO<sub>2</sub>]]|| [[Neptunium(IV) oxide|NpO<sub>2</sub>]]|| [[Plutonium(IV) oxide|PuO<sub>2</sub>]]|| [[Americium dioxide|AmO<sub>2</sub>]]|| CmO<sub>2</sub>|| BkO<sub>2</sub>|| CfO<sub>2</sub> |- | style="background:lightblue; text-align:left;"|[[CAS Number]] | 1314-20-1|| 12036-03-2|| 1344-57-6|| 12035-79-9|| 12059-95-9|| 12005-67-3|| 12016-67-0|| 12010-84-3|| 12015–10–0 |- | style="background:lightblue; text-align:left;"|[[Molar mass]] | 264.04 || 263.035 || 270.03 || 269.047 || 276.063 || 275.06 || 270–284**|| 279.069 || 283.078 |- | style="background:lightblue; text-align:left;"|[[Melting point]]<ref>{{cite book|author1=L.R. Morss |author2=Norman M. Edelstein|author3=Jean Fuger|title=The Chemistry of the Actinide and Transactinide Elements (Set Vol.1–6)|url=https://books.google.com/books?id=9vPuV3A0UGUC&pg=PA2139|year=2011|publisher=Springer|isbn=978-94-007-0210-3|page=2139}}</ref> | 3390 °C||||2865 °C||2547 °C||2400 °C||2175 °C|| || || |- | style="background:lightblue; text-align:left;"|Crystal structure | Colspan = "9"|[[File:CaF2 polyhedra.png|250px]]<br />'''An'''<sup>4+</sup>: <span style="color:silver; background:silver;">__</span> / O<sup>2−</sup>: <span style="color:#9c0; background:#9c0;">__</span> |- | style="background:lightblue; text-align:left;"|[[Space group]] | Colspan = "9"|Fm{{overline|3}}m |- | style="background:lightblue; text-align:left;"|[[Coordination number]] | Colspan = "9" |'''An'''[8], O[4] |} : <small>'''An''' – actinide <br />**Depending on the isotopes</small> Some actinides can exist in several oxide forms such as An<sub>2</sub>O<sub>3</sub>, AnO<sub>2</sub>, An<sub>2</sub>O<sub>5</sub> and AnO<sub>3</sub>. For all actinides, oxides AnO<sub>3</sub> are [[Amphoterism|amphoteric]] and An<sub>2</sub>O<sub>3</sub>, AnO<sub>2</sub> and An<sub>2</sub>O<sub>5</sub> are basic, they easily react with water, forming bases:<ref name=g222 /> : An<sub>2</sub>O<sub>3</sub> + 3 H<sub>2</sub>O → 2 An(OH)<sub>3</sub>. These bases are poorly soluble in water and by their activity are close to the [[hydroxide]]s of rare-earth metals.<ref name=g222 /> Np(OH)<sub>3</sub> has not yet been synthesized, [[Plutonium(III) hydroxide|Pu(OH)<sub>3</sub>]] has a blue color while [[Americium(III) hydroxide|Am(OH)<sub>3</sub>]] is pink and [[Curium(III) hydroxide|Cm(OH)<sub>3</sub>]] is colorless.<ref name="Tananaev">{{cite book|last1=Krivovichev|first1=Sergei|last2=Burns|first2=Peter|last3=Tananaev|first3=Ivan|title=Structural Chemistry of Inorganic Actinide Compounds|publisher=Elsevier|chapter=Chapter 3|isbn=978-0-08-046791-7|year=2006|pages=67–78|chapter-url=https://books.google.com/books?id=mV-phntexBQC&pg=PA67}}</ref> Bk(OH)<sub>3</sub> and Cf(OH)<sub>3</sub> are also known, as are tetravalent hydroxides for Np, Pu and Am and pentavalent for Np and Am.<ref name="Tananaev" /> The strongest base is of actinium. All compounds of actinium are colorless, except for black [[actinium sulfide]] (Ac<sub>2</sub>S<sub>3</sub>).<ref name="g222" /> Dioxides of tetravalent actinides crystallize in the [[cubic system]], same as in [[calcium fluoride]]. Thorium reacting with oxygen exclusively forms the dioxide: : <chem>Th{} + O2 ->[\ce{1000^\circ C}] \overbrace{ThO2}^{Thorium~dioxide}</chem> Thorium dioxide is a refractory material with the highest melting point among any known oxide (3390 °C).<ref name="g1268" /> Adding 0.8–1% ThO<sub>2</sub> to tungsten stabilizes its structure, so the doped filaments have better mechanical stability to vibrations. To dissolve ThO<sub>2</sub> in acids, it is heated to 500–600 °C; heating above 600 °C produces a very resistant to acids and other reagents form of ThO<sub>2</sub>. Small addition of fluoride ions [[Catalyst|catalyses]] dissolution of thorium dioxide in acids. Two protactinium oxides have been obtained: PaO<sub>2</sub> (black) and Pa<sub>2</sub>O<sub>5</sub> (white); the former is isomorphic with ThO<sub>2</sub> and the latter is easier to obtain. Both oxides are basic, and Pa(OH)<sub>5</sub> is a weak, poorly soluble base.<ref name=g222 /> Decomposition of certain salts of uranium, for example UO<sub>2</sub>(NO<sub>3</sub>)·6H<sub>2</sub>O in air at 400 °C, yields orange or yellow UO<sub>3</sub>.<ref name="g1268" /> This oxide is amphoteric and forms several hydroxides, the most stable being [[uranyl hydroxide]] UO<sub>2</sub>(OH)<sub>2</sub>. Reaction of uranium(VI) oxide with hydrogen results in uranium dioxide, which is similar in its properties with ThO<sub>2</sub>. This oxide is also basic and corresponds to the uranium hydroxide U(OH)<sub>4</sub>.<ref name=g222 /> Plutonium, neptunium and americium form two basic oxides: An<sub>2</sub>O<sub>3</sub> and AnO<sub>2</sub>. Neptunium trioxide is unstable; thus, only Np<sub>3</sub>O<sub>8</sub> could be obtained so far. However, the oxides of plutonium and neptunium with the chemical formula AnO<sub>2</sub> and An<sub>2</sub>O<sub>3</sub> are well characterized.<ref name=g222 /> === Salts === {| Class = "wikitable collapsible" style="text-align: center" |+ Trichlorides of some actinides<ref name=g1270>Greenwood, p. 1270</ref> |- ! style="background:lightblue; text-align:left;"|[[Chemical formula]] | AcCl<sub>3</sub>|| UCl<sub>3</sub>|| NpCl<sub>3</sub>|| PuCl<sub>3</sub>|| AmCl<sub>3</sub>|| CmCl<sub>3</sub>|| BkCl<sub>3</sub>|| CfCl<sub>3</sub> |- ! style="background:lightblue; text-align:left;"|[[CAS-number]] | 22986-54-5|| 10025-93-1|| 20737-06-8|| 13569-62-5|| 13464-46-5|| 13537-20-7|| 13536-46-4|| 13536–90–8 |- ! style="background:lightblue; text-align:left;"|[[Molar mass]] | 333.386 || 344.387 || 343.406 || 350.32 || 349.42 || 344–358**|| 353.428 || 357.438 |- ! style="background:lightblue; text-align:left;"|[[Melting point]] ||| 837 °C||800 °C||767 °C||715 °C||695 °C||603 °C||545 °C |- ! style="background:lightblue; text-align:left;"|[[Boiling point]] ||| 1657 °C||||1767 °C||850 °C|| || || |- ! style="background:lightblue; text-align:left;"|Crystal structure | Colspan = "8"|[[File:UCl3 without caption.png|250px|The crystal structure of uranium trichloride]]<br />'''An'''<sup>3+</sup>: <span style="color:silver; background:silver;">__</span> / Cl<sup>−</sup>: <span style="color:#0f0; background:#0f0;">__</span> |- ! style="background:lightblue; text-align:left;"|[[Space group]] | Colspan = "8"|P6<sub>3</sub>/m |- ! style="background:lightblue; text-align:left;"|[[Coordination number]] | Colspan = "8" |'''An'''*[9], Cl [3] |- ! style="background:lightblue; text-align:left;"|Lattice constants | ''a'' = 762 [[picometres|pm]]<br /> ''c'' = 455 pm|| ''a'' = 745.2 pm<br /> ''c'' = 432.8 pm|| || ''a'' = 739.4 pm<br /> ''c'' = 424.3 pm|| ''a'' = 738.2 pm<br /> ''c'' = 421.4 pm|| ''a'' = 726 pm<br /> ''c'' = 414 pm|| ''a'' = 738.2 pm<br /> ''c'' = 412.7 pm|| ''a'' = 738 pm <br /> ''c'' = 409 pm |} :<small> *'''An''' – actinide <br />**Depending on the isotopes</small> {| Class = "wikitable collapsible collapsed" style="text-align: center" |+ Actinide fluorides<ref name="Himiya neptuniya" /><ref name="Himiya protaktiniya" /><ref name="Tablitsa soedineniy">{{cite web|url=http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/01_osnovnye_svoystva_neorganicheskikh_organicheskikh_i_elementoorganicheskikh_soedineniy|title=Таблица Inorganic and Coordination compounds|language = ru|access-date =11 July 2010}}</ref><ref name=g1270 /><ref>Myasoedov, pp. 96–99</ref> |- ! Rowspan = "2"|Compound ! rowspan="2"|Color ! rowspan="2"|Crystal symmetry, type ! colspan="3"|Lattice constants, Å ! rowspan="2"|Density, g/cm<sup>3</sup> |- !''a'' !''b'' !''c'' |- | AcF<sub>3</sub>|| White|| Hexagonal, LaF<sub>3</sub>|| 4.27 ||-|| 7.53|| 7.88 |- | PaF<sub>4</sub>|| Dark brown|| [[Monoclinic]]|| 12.7|| 10.7|| 8.42|| – |- | PaF<sub>5</sub>|| Black|| [[Tetragonal]], β-UF<sub>5</sub>|| 11.53 ||-|| 5.19|| – |- | ThF<sub>4</sub>|| Colorless|| Monoclinic|| 13|| 10.99|| 8.58|| 5.71 |- | UF<sub>3</sub>|| Reddish-purple|| Hexagonal|| 7.18 ||-|| 7.34|| 8.54 |- | UF<sub>4</sub>|| Green|| Monoclinic|| 11.27|| 10.75|| 8.40|| 6.72 |- | α-UF<sub>5</sub>|| Bluish|| Tetragonal|| 6.52 ||-|| 4.47|| 5.81 |- | β-UF<sub>5</sub>|| Bluish|| Tetragonal|| 11.47 ||-|| 5.20|| 6.45 |- | UF<sub>6</sub>|| Yellowish|| Orthorhombic|| 9.92|| 8.95|| 5.19|| 5.06 |- | NpF<sub>3</sub>|| Black or purple|| Hexagonal|| 7.129 ||-|| 7.288|| 9.12 |- | NpF<sub>4</sub>|| Light green|| Monoclinic|| 12.67|| 10.62|| 8.41|| 6.8 |- | NpF<sub>6</sub>|| Orange|| Orthorhombic|| 9.91|| 8.97|| 5.21|| 5 |- | PuF<sub>3</sub>|| Violet-blue|| Trigonal|| 7.09 ||-|| 7.25|| 9.32 |- | PuF<sub>4</sub>|| Pale brown|| Monoclinic|| 12.59|| 10.57|| 8.28|| 6.96 |- | PuF<sub>6</sub>|| Red-brown|| Orthorhombic|| 9.95|| 9.02|| 3.26|| 4.86 |- | AmF<sub>3</sub>|| Pink or light beige|| [[Hexagonal crystal system|hexagonal]], LaF<sub>3</sub>|| 7.04<ref name="katz">{{cite book|author = F. Weigel|title = The Chemistry of the Actinide Elements|place=Moscow|publisher = Mir| year = 1997|volume = 2|isbn = 978-5-03-001885-0|author2 = J. Katz|author3 = G. Seaborg}}</ref><ref>{{cite journal|last1=Nave|first1=S.|last2=Haire|first2=R.|last3=Huray|first3=Paul|title=Magnetic properties of actinide elements having the 5f<sup>6</sup> and 5f<sup>7</sup> electronic configurations|journal=Physical Review B|volume=28|issue=5|pages=2317–2327|year=1983|doi=10.1103/PhysRevB.28.2317|bibcode = 1983PhRvB..28.2317N }}</ref>||-|| 7.255|| 9.53 |- | AmF<sub>4</sub>|| Orange-red|| [[Monoclinic]]|| 12.53|| 10.51|| 8.20|| – |- | CmF<sub>3</sub>|| From brown to white|| Hexagonal|| 4.041 ||-|| 7.179|| 9.7 |- | CmF<sub>4</sub>|| Yellow|| Monoclinic, UF<sub>4</sub>|| 12.51|| 10.51|| 8.20|| – |- | BkF<sub>3</sub>|| Yellow-green|| [[Trigonal]], LaF<sub>3</sub><br /> [[Orthorhombic]], YF<sub>3</sub>|| 6.97<br /> 6.7|| -<br /> 7.09|| 7.14<br /> 4.41|| 10.15<br /> 9.7 |- | BkF<sub>4</sub>||-|| Monoclinic, UF<sub>4</sub>|| 12.47|| 10.58|| 8.17|| – |- | CfF<sub>3</sub>|| -<br /> -|| Trigonal, LaF<sub>3</sub><br /> Orthorhombic, YF<sub>3</sub>|| 6. 94<br /> 6.65|| -<br /> 7.04|| 7.10<br /> 4.39|| – |- | CfF<sub>4</sub>|| -<br /> -|| Monoclinic, UF<sub>4</sub><br /> Monoclinic, UF<sub>4</sub>|| 1.242 <br /> 1.233|| 1.047<br /> 1.040|| 8.126<br /> 8.113|| – |} [[File:Einsteinium triiodide by transmitted light.jpg|thumb|left|[[Einsteinium triiodide]] glowing in the dark]] Actinides easily react with halogens forming salts with the formulas MX<sub>3</sub> and MX<sub>4</sub> (X = [[halogen]]). So the first berkelium compound, [[Berkelium(III) chloride|BkCl<sub>3</sub>]], was synthesized in 1962 with an amount of 3 nanograms. Like the halogens of rare earth elements, actinide [[chloride]]s, [[bromide]]s, and [[iodide]]s are water-soluble, and [[fluoride]]s are insoluble. Uranium easily yields a colorless hexafluoride, which [[Sublimation (phase transition)|sublimates]] at a temperature of 56.5 °C; because of its volatility, it is used in the separation of uranium isotopes with [[gas centrifuge]] or [[gaseous diffusion]]. Actinide hexafluorides have properties close to [[anhydride]]s. They are very sensitive to moisture and hydrolyze forming AnO<sub>2</sub>F<sub>2</sub>.<ref name=g1269>Greenwood, p.1269</ref> The [[Uranium pentachloride|pentachloride]] and black [[Uranium hexachloride|hexachloride]] of uranium were synthesized, but they are both unstable.<ref name=g222 /> Action of acids on actinides yields salts, and if the acids are non-oxidizing then the actinide in the salt is in low-valence state: : U + 2 [[Sulfuric acid|H<sub>2</sub>SO<sub>4</sub>]] → [[Uranium(IV) sulfate|U(SO<sub>4</sub>)<sub>2</sub>]] + 2 H<sub>2</sub> : 2 Pu + 6 [[Hydrochloric acid|HCl]] → 2 [[Plutonium(III) chloride|PuCl<sub>3</sub>]] + 3 H<sub>2</sub> However, in these reactions the regenerating hydrogen can react with the metal, forming the corresponding hydride. Uranium reacts with acids and water much more easily than thorium.<ref name=g222 /> Actinide salts can also be obtained by dissolving the corresponding hydroxides in acids. Nitrates, chlorides, sulfates and perchlorates of actinides are water-soluble. When crystallizing from aqueous solutions, these salts form hydrates, such as [[Thorium(IV) nitrate|Th(NO<sub>3</sub>)<sub>4</sub>·6H<sub>2</sub>O]], [[Thorium(IV) sulfate|Th(SO<sub>4</sub>)<sub>2</sub>·9H<sub>2</sub>O]] and [[Plutonium(III) sulfate|Pu<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·7H<sub>2</sub>O]]. Salts of high-valence actinides easily hydrolyze. So, colorless sulfate, chloride, perchlorate and nitrate of thorium transform into basic salts with formulas Th(OH)<sub>2</sub>SO<sub>4</sub> and Th(OH)<sub>3</sub>NO<sub>3</sub>. The solubility and insolubility of trivalent and tetravalent actinides is like that of lanthanide salts. So [[phosphate]]s, [[fluoride]]s, [[oxalate]]s, [[iodate]]s and [[carbonate]]s of actinides are weakly soluble in water; they precipitate as hydrates, such as [[Thorium(IV) fluoride|ThF<sub>4</sub>·3H<sub>2</sub>O]] and [[Thorium(IV) chromate|Th(CrO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O]].<ref name=g222 /> Actinides with oxidation state +6, except for the AnO<sub>2</sub><sup>2+</sup>-type cations, form [AnO<sub>4</sub>]<sup>2−</sup>, [An<sub>2</sub>O<sub>7</sub>]<sup>2−</sup> and other complex anions. For example, uranium, neptunium and plutonium form salts of the Na<sub>2</sub>UO<sub>4</sub> ([[uranate]]) and (NH<sub>4</sub>)<sub>2</sub>U<sub>2</sub>O<sub>7</sub> (diuranate) types. In comparison with lanthanides, actinides more easily form [[coordination compound]]s, and this ability increases with the actinide valence. Trivalent actinides do not form fluoride coordination compounds, whereas tetravalent thorium forms K<sub>2</sub>ThF<sub>6</sub>, KThF<sub>5</sub>, and even K<sub>5</sub>ThF<sub>9</sub> complexes. Thorium also forms the corresponding [[sulfate]]s (for example Na<sub>2</sub>SO<sub>4</sub>·Th(SO<sub>4</sub>)<sub>2</sub>·5H<sub>2</sub>O), [[nitrate]]s and [[thiocyanate]]s. Salts with the general formula An<sub>2</sub>Th(NO<sub>3</sub>)<sub>6</sub>·''n''H<sub>2</sub>O are of coordination nature, with the [[coordination number]] of thorium equal to 12. Even easier is to produce complex salts of pentavalent and hexavalent actinides. The most stable coordination compounds of actinides – tetravalent thorium and uranium – are obtained in reactions with diketones, e.g. [[acetylacetone]].<ref name=g222 />
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Actinide
(section)
Add topic