Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Uncertainty principle
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Constant momentum=== {{Main article|Wave packet}} [[File:Guassian Dispersion.gif|360 px|thumb|right|Position space probability density of an initially Gaussian state moving at minimally uncertain, constant momentum in free space]] Assume a particle initially has a [[momentum space]] wave function described by a normal distribution around some constant momentum ''p''<sub>0</sub> according to <math display="block">\varphi(p) = \left(\frac{x_0}{\hbar \sqrt{\pi}} \right)^{1/2} \exp\left(\frac{-x_0^2 (p-p_0)^2}{2\hbar^2}\right),</math> where we have introduced a reference scale <math display="inline">x_0=\sqrt{\hbar/m\omega_0}</math>, with <math>\omega_0>0</math> describing the width of the distribution—cf. [[nondimensionalization]]. If the state is allowed to evolve in free space, then the time-dependent momentum and position space wave functions are <math display="block">\Phi(p,t) = \left(\frac{x_0}{\hbar \sqrt{\pi}} \right)^{1/2} \exp\left(\frac{-x_0^2 (p-p_0)^2}{2\hbar^2}-\frac{ip^2 t}{2m\hbar}\right),</math> <math display="block">\Psi(x,t) = \left(\frac{1}{x_0 \sqrt{\pi}} \right)^{1/2} \frac{e^{-x_0^2 p_0^2 /2\hbar^2}}{\sqrt{1+i\omega_0 t}} \, \exp\left(-\frac{(x-ix_0^2 p_0/\hbar)^2}{2x_0^2 (1+i\omega_0 t)}\right).</math> Since <math> \langle p(t) \rangle = p_0</math> and <math>\sigma_p(t) = \hbar /(\sqrt{2}x_0)</math>, this can be interpreted as a particle moving along with constant momentum at arbitrarily high precision. On the other hand, the standard deviation of the position is <math display="block">\sigma_x = \frac{x_0}{\sqrt{2}} \sqrt{1+\omega_0^2 t^2}</math> such that the uncertainty product can only increase with time as <math display="block">\sigma_x(t) \sigma_p(t) = \frac{\hbar}{2} \sqrt{1+\omega_0^2 t^2}</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Uncertainty principle
(section)
Add topic