Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Tensor product
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Tensor product of linear maps == {{redirect|Tensor product of linear maps|the generalization for modules|Tensor product of modules#Tensor product of linear maps and a change of base ring}} Given a linear map {{tmath|1= f : U\to V }}, and a vector space {{mvar|W}}, the ''tensor product:'' : <math>f\otimes W : U\otimes W\to V\otimes W</math> is the unique linear map such that: : <math>(f\otimes W)(u\otimes w)=f(u)\otimes w.</math> The tensor product <math>W\otimes f</math> is defined similarly. Given two linear maps <math>f : U\to V</math> and {{tmath|1= g : W\to Z }}, their tensor product: : <math>f\otimes g : U\otimes W\to V\otimes Z</math> is the unique linear map that satisfies: : <math>(f\otimes g)(u\otimes w)=f(u)\otimes g(w).</math> One has: : <math>f\otimes g= (f\otimes Z)\circ (U\otimes g) = (V\otimes g)\circ (f\otimes W).</math> In terms of [[category theory]], this means that the tensor product is a [[bifunctor]] from the [[category (mathematics)|category]] of vector spaces to itself.<ref>{{cite book| last1=Hazewinkel|first1=Michiel|last2=Gubareni|first2=Nadezhda Mikhaĭlovna| last3=Gubareni|first3=Nadiya|last4=Kirichenko|first4=Vladimir V.|title=Algebras, rings and modules|page=100| publisher=Springer|year=2004|isbn=978-1-4020-2690-4}}</ref> If {{mvar|f}} and {{mvar|g}} are both [[injective]] or [[surjective]], then the same is true for all above defined linear maps. In particular, the tensor product with a vector space is an [[exact functor]]; this means that every [[exact sequence]] is mapped to an exact sequence ([[tensor product of modules|tensor products of modules]] do not transform injections into injections, but they are [[right exact functor]]s). By choosing bases of all vector spaces involved, the linear maps {{math|''f''}} and {{math|''g''}} can be represented by [[matrix (mathematics)|matrices]]. Then, depending on how the tensor <math>v \otimes w</math> is vectorized, the matrix describing the tensor product <math>f \otimes g</math> is the [[Kronecker product]] of the two matrices. For example, if {{math|''V'', ''X'', ''W''}}, and {{math|''U''}} above are all two-dimensional and bases have been fixed for all of them, and {{math|''f''}} and {{math|''g''}} are given by the matrices: <math display="block">A=\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{bmatrix}, \qquad B=\begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix},</math> respectively, then the tensor product of these two matrices is: <math> \begin{align} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{bmatrix} \otimes \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} &= \begin{bmatrix} a_{1,1} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} & a_{1,2} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} \\[3pt] a_{2,1} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} & a_{2,2} \begin{bmatrix} b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2} \\ \end{bmatrix} \\ \end{bmatrix} \\ &= \begin{bmatrix} a_{1,1} b_{1,1} & a_{1,1} b_{1,2} & a_{1,2} b_{1,1} & a_{1,2} b_{1,2} \\ a_{1,1} b_{2,1} & a_{1,1} b_{2,2} & a_{1,2} b_{2,1} & a_{1,2} b_{2,2} \\ a_{2,1} b_{1,1} & a_{2,1} b_{1,2} & a_{2,2} b_{1,1} & a_{2,2} b_{1,2} \\ a_{2,1} b_{2,1} & a_{2,1} b_{2,2} & a_{2,2} b_{2,1} & a_{2,2} b_{2,2} \\ \end{bmatrix}. \end{align} </math> The resultant rank is at most 4, and thus the resultant dimension is 4. {{em|rank}} here denotes the [[tensor rank]] i.e. the number of requisite indices (while the [[matrix rank]] counts the number of degrees of freedom in the resulting array). {{tmath|1= \operatorname{Tr} A \otimes B = \operatorname{Tr} A \times \operatorname{Tr} B }}. A [[dyadic product]] is the special case of the tensor product between two vectors of the same dimension.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Tensor product
(section)
Add topic