Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Symplectic manifold
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Example: Cotangent bundle==== The cotangent bundle of a manifold is locally modeled on a space similar to the first example. It can be shown that we can glue these affine symplectic forms hence this bundle forms a symplectic manifold. A less trivial example of a Lagrangian submanifold is the zero section of the cotangent bundle of a manifold. For example, let :<math>X = \{(x,y) \in \R^2 : y^2 - x = 0\}.</math> Then, we can present <math>T^*X</math> as :<math>T^*X = \{(x,y,\mathrm{d}x,\mathrm{d}y) \in \R^4 : y^2 - x = 0, 2y\mathrm{d}y - \mathrm{d}x = 0\}</math> where we are treating the symbols <math>\mathrm{d}x,\mathrm{d}y</math> as coordinates of <math>\R^4 = T^*\R^2</math>. We can consider the subset where the coordinates <math>\mathrm{d}x=0</math> and <math>\mathrm{d}y=0</math>, giving us the zero section. This example can be repeated for any manifold defined by the vanishing locus of smooth functions <math>f_1,\dotsc,f_k</math> and their differentials <math>\mathrm{d}f_1,\dotsc,df_k</math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Symplectic manifold
(section)
Add topic