Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Superfluid helium-4
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Fountain pressure === In order to rewrite Eq.{{EquationNote|1|(1)}} in more familiar form we use the general formula {{NumBlk2|:|<math display="block">\mathrm{d} \mu = V_m\mathrm{d}p - S_m\mathrm{d}T.</math>|2}} Here <math display="inline">S_m</math> is the molar entropy and <math display="inline">V_m</math> the molar volume. With Eq.{{EquationNote|2|(2)}} <math display="inline">\mu(p,T)</math> can be found by a line integration in the <math display="inline">p</math>β<math display="inline">T</math> plane. First we integrate from the origin <math display="inline">(0,0)</math> to <math display="inline">(p,0)</math>, so at <math display="inline">T=0</math>. Next we integrate from <math display="inline">(p,0)</math> to <math display="inline">(p,T)</math>, so with constant pressure (see figure 6). In the first integral <math display="inline">\mathrm{d}T=0</math> and in the second <math display="inline">\mathrm{d}p=0</math>. With Eq.{{EquationNote|2|(2)}} we obtain {{NumBlk2|:|<math display="block">\mu (p,T)=\mu (0,0)+\int_{0}^{p} V_{m}(p^\prime,0)\mathrm{d}p^\prime -\int_{0}^T S_{m}(p,T^\prime)\mathrm{d}T^\prime.</math>|3}} We are interested only in cases where <math display="inline">p</math> is small so that <math display="inline">V_m</math> is practically constant. So {{NumBlk2|:|<math display="block">\int_{0}^{p} V_{m}(p^\prime,0)\mathrm{d}p^\prime = V_{m0}p</math>|4}} where <math display="inline">V_{m0}</math> is the molar volume of the liquid at <math display="inline">T=0</math> and <math display="inline">p=0</math>. The other term in Eq.{{EquationNote|3|(3)}} is also written as a product of <math display="inline">V_{m0}</math> and a quantity <math>p_f</math> which has the dimension of pressure {{NumBlk2|:|<math display="block">\int_{0}^T S_{m}(p,T^\prime)\mathrm{d}T^\prime=V_{m0}p_{f}.</math>|5}} The pressure <math display="inline">p_f</math> is called the fountain pressure. It can be calculated from the entropy of <sup>4</sup>He which, in turn, can be calculated from the heat capacity. For <math display="inline">T=T_\lambda</math> the fountain pressure is equal to 0.692 bar. With a density of liquid helium of 125 kg/m<sup>3</sup> and {{mvar|g}} = 9.8 m/s<sup>2</sup> this corresponds with a liquid-helium column of 56 meter height. So, in many experiments, the fountain pressure has a bigger effect on the motion of the superfluid helium than gravity. With Eqs.{{EquationNote|4|(4)}} and {{EquationNote|5|(5)}}, Eq.{{EquationNote|3|(3)}} obtains the form {{NumBlk2|:|<math display="block">\mu(p,T) = \mu_0 + V_{m0}(p-p_{f}).</math>|6}} Substitution of Eq.{{EquationNote|6|(6)}} in {{EquationNote|1|(1)}} gives {{NumBlk2|:|<math display="block">\rho_0 \frac{\mathrm{d} \vec v_s}{\mathrm{d}t} = - \vec\nabla (p + \rho_0gz-p_{f}).</math>|7}} with <math display="inline">\rho_0 = M_4/V_{m0}</math> the density of liquid <sup>4</sup>He at zero pressure and temperature. Eq.{{EquationNote|7|(7)}} shows that the superfluid component is accelerated by gradients in the pressure and in the gravitational field, as usual, but also by a gradient in the fountain pressure. So far Eq.{{EquationNote|5|(5)}} has only mathematical meaning, but in special experimental arrangements <math display="inline">p_f</math> can show up as a real pressure. Figure 7 shows two vessels both containing He-II. The left vessel is supposed to be at zero kelvins (<math display="inline">T_l=0</math>) and zero pressure (<math display="inline">p_l = 0</math>). The vessels are connected by a so-called superleak. This is a tube, filled with a very fine powder, so the flow of the normal component is blocked. However, the superfluid component can flow through this superleak without any problem (below a critical velocity of about 20 cm/s). In the steady state <math display="inline">v_s=0</math> so Eq.{{EquationNote|7|(7)}} implies {{NumBlk2|:|<math>p_{l}+\rho_0gz_{l}-p_{fl}=p_{r}+ \rho_0gz_{r}-p_{fr}</math>|8}} where the indexes <math display="inline">l</math> and <math display="inline">r</math> apply to the left and right side of the superleak respectively. In this particular case <math display="inline">p_l = 0</math>, <math display="inline">z_l = z_r</math>, and <math display="inline">p_{fl} = 0</math> (since <math display="inline">T_l = 0</math>). Consequently, <math display="block">0=p_{r}-p_{fr}.</math> This means that the pressure in the right vessel is equal to the fountain pressure at <math display="inline">T_r</math>. In an experiment, arranged as in figure 8, a fountain can be created. The fountain effect is used to drive the circulation of <sup>3</sup>He in dilution refrigerators.<ref>{{cite journal|doi=10.1016/0375-9601(75)90087-0|title=A dilution refrigerator with superfluid injection|year=1975|last1=Staas|first1=F. A.|last2=Severijns|first2=A. P.|last3=Van Der Waerden|first3=H. C.bM.|journal=Physics Letters A|volume=53|issue=4|page=327|bibcode = 1975PhLA...53..327S }}</ref><ref>{{cite journal|title=<sup>3</sup>He flow in dilute <sup>3</sup>He-<sup>4</sup>He mixtures at temperatures between 10 and 150 mK|doi=10.1103/PhysRevB.32.2870|pmid=9937394|year=1985|last1=Castelijns|first1=C.|last2=Kuerten|first2=J.|last3=De Waele|first3=A.|last4=Gijsman|first4=H.|journal=Physical Review B|volume=32|issue=5|pages=2870β2886|bibcode = 1985PhRvB..32.2870C |url=https://research.tue.nl/nl/publications/3he-flow-in-dilute-3he4he-mixtures-at-temperatures-between-10-and-150-mk(d7aefa27-5cff-4379-9b28-e0623ec7de38).html}}</ref> [[File:Counterflow heat exchange 01.jpg|thumb|Fig. 9. Transport of heat by a counterflow of the normal and superfluid components of He-II]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Superfluid helium-4
(section)
Add topic