Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Stirling number
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Stirling numbers with negative integral values== The Stirling numbers can be extended to negative integral values, but not all authors do so in the same way.<ref name="Loeb">{{cite journal |last1=Loeb |first1=Daniel E.|orig-year=Received 3 Nov 1989|title=A generalization of the Stirling numbers |journal=Discrete Mathematics |volume=103 |issue= 3|pages=259β269 |doi= 10.1016/0012-365X(92)90318-A|year=1992 |doi-access=free }}</ref><ref name=":0">{{cite web |url=http://www.fq.math.ca/Scanned/34-3/branson.pdf |archive-url=https://web.archive.org/web/20110827132927/http://www.fq.math.ca/Scanned/34-3/branson.pdf |archive-date=2011-08-27 |url-status=live |title=An extension of Stirling numbers |last=Branson |first=David |date=August 1994 |website=The Fibonacci Quarterly |access-date=Dec 6, 2017 }}</ref><ref name=":1">D.E. Knuth, 1992.</ref> Regardless of the approach taken, it is worth noting that Stirling numbers of first and second kind are connected by the relations: : <math>\biggl[{n \atop k}\biggr] = \biggl\{{\!-k\! \atop \!-n\!}\biggr\} \quad \text{and} \quad \biggl\{{\!n\! \atop \!k\!}\biggr\} = \biggl[{-k \atop -n}\biggr]</math> when ''n'' and ''k'' are nonnegative integers. So we have the following table for <math>\left[{-n \atop -k}\right]</math>: {| cellspacing="0" cellpadding="5" style="text-align:right;" class="wikitable" |- | {{diagonal split header|''n''|''k''}} ! {{rh|align=right}} | β1 ! {{rh|align=right}} | β2 ! {{rh|align=right}} | β3 ! {{rh|align=right}} | β4 ! {{rh|align=right}} | β5 |- ! {{rh|align=right}} | β1 | 1 | 1 | 1 | 1 | 1 |- ! {{rh|align=right}} | β2 | 0 | 1 | 3 | 7 | 15 |- ! {{rh|align=right}} | β3 | 0 | 0 | 1 | 6 | 25 |- ! {{rh|align=right}} | β4 | 0 | 0 | 0 | 1 | 10 |- ! {{rh|align=right}} | β5 | 0 | 0 | 0 | 0 | 1 |} Donald Knuth<ref name=":1" /> defined the more general Stirling numbers by extending a [[Stirling numbers of the second kind#Recurrence relation|recurrence relation]] to all integers. In this approach, <math display=inline> \left[{n \atop k}\right]</math> and <math display=inline>\left\{{\!n\! \atop \!k\!}\right\}</math> are zero if ''n'' is negative and ''k'' is nonnegative, or if ''n'' is nonnegative and ''k'' is negative, and so we have, for ''any'' integers ''n'' and ''k'', : <math>\biggl[{n \atop k}\biggr] = \biggl\{{\!-k\! \atop \!-n\!}\biggr\} \quad \text{and} \quad \biggl\{{\!n\! \atop \!k\!}\biggr\} = \biggl[{-k \atop -n}\biggr].</math> On the other hand, for positive integers ''n'' and ''k'', David Branson<ref name=":0" /> defined <math display=inline> \left[{-n \atop -k}\right]\!,</math> <math display=inline>\left\{{\!-n\! \atop \!-k\!}\right\}\!,</math> <math display=inline> \left[{-n \atop k}\right]\!,</math> and <math display=inline>\left\{{\!-n\! \atop \!k\!}\right\}</math> (but not <math display=inline> \left[{n \atop -k}\right]</math> or <math display=inline>\left\{{\!n\! \atop \!-k\!}\right\}</math>). In this approach, one has the following extension of the [[Stirling numbers of the second kind#Recurrence relation|recurrence relation]] of the Stirling numbers of the first kind: :<math> \biggl[{-n \atop k}\biggr] = \frac{(-1)^{n+1}}{n!}\sum_{i=1}^{n}\frac{(-1)^{i+1}}{i^k} \binom ni </math>, For example, <math display=inline>\left[{-5 \atop k}\right] = \frac1{120}\Bigl(5-\frac{10}{2^k}+\frac{10}{3^k}-\frac 5{4^k}+\frac 1{5^k}\Bigr).</math> This leads to the following table of values of <math display=inline>\left[{n \atop k}\right]</math> for negative integral ''n''. {| cellspacing="0" cellpadding="5" style="text-align:center;" class="wikitable" |- | {{diagonal split header|''n''|''k''}} ! 0 ! 1 ! 2 ! 3 ! 4 |- ! β1 | 1 | 1 | 1 | 1 | 1 |- ! β2 | {{sfrac|{{val|-1}}|{{val|2}}}} | {{sfrac|{{val|-3}}|{{val|4}}}} | {{sfrac|{{val|-7}}|{{val|8}}}} | {{sfrac|{{val|-15}}|{{val|16}}}} | {{sfrac|{{val|-31}}|{{val|32}}}} |- ! β3 | {{sfrac|{{val|1}}|{{val|6}}}} | {{sfrac|{{val|11}}|{{val|36}}}} | {{sfrac|{{val|85}}|{{val|216}}}} | {{sfrac|{{val|575}}|{{val|1296}}}} | {{sfrac|{{val|3661}}|{{val|7776}}}} |- ! β4 | {{sfrac|{{val|-1}}|{{val|24}}}} | {{sfrac|{{val|-25}}|{{val|288}}}} | {{sfrac|{{val|-415}}|{{val|3456}}}} | {{sfrac|{{val|-5845}}|{{val|41472}}}} | {{sfrac|{{val|-76111}}|{{val|497664}}}} |- ! β5 | {{sfrac|{{val|1}}|{{val|120}}}} | {{sfrac|{{val|137}}|{{val|7200}}}} | {{sfrac|{{val|12019}}|{{val|432000}}}} | {{sfrac|{{val|874853}}|{{val|25920000}}}} | {{sfrac|{{val|58067611}}|{{val|1555200000}}}} |} In this case <math display=inline>\sum_{n=1}^{\infty}\left[{-n \atop -k}\right]=B_{k} </math> where <math>B_{k}</math> is a [[Bell number]], and so one may define the negative Bell numbers by <math display=inline>\sum_{n=1}^{\infty}\left[{-n \atop k}\right]=:B_{-k}</math>. For example, this produces <math display=inline>\sum_{n=1}^{\infty}\left[{-n \atop 1}\right]=B_{-1}=\frac 1e\sum_{j=1}^\infty\frac1{j\cdot j!}=\frac 1e\int_0^1\frac{e^t-1}{t}dt=0.4848291\dots</math>, generally <math display=inline>B_{-k}=\frac 1e\sum_{j=1}^\infty\frac1{j^kj!} </math>.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Stirling number
(section)
Add topic