Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Special unitary group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== SU(3) == {{see also|Clebsch–Gordan coefficients for SU(3)}} The group {{math|SU(3)}} is an 8-dimensional [[simple Lie group]] consisting of all {{math|3 × 3}} [[Unitary matrix|unitary]] [[Matrix (mathematics)|matrices]] with [[determinant]] 1. === Topology === The group {{math|SU(3)}} is a simply-connected, compact Lie group.<ref>{{harvnb|Hall|2015}} Proposition 13.11</ref> Its topological structure can be understood by noting that {{math|SU(3)}} acts [[transitive action|transitively]] on the unit sphere <math>S^5</math> in <math>\mathbb{C}^3 \cong \mathbb{R}^6</math>. The [[Group action (mathematics)#Fixed points and stabilizer subgroups|stabilizer]] of an arbitrary point in the sphere is isomorphic to {{math|SU(2)}}, which topologically is a 3-sphere. It then follows that {{math|SU(3)}} is a [[fiber bundle]] over the base {{math|''S''<sup>5</sup>}} with fiber {{math|''S''<sup>3</sup>}}. Since the fibers and the base are simply connected, the simple connectedness of {{math|SU(3)}} then follows by means of a standard topological result (the [[Homotopy group#Long exact sequence of a fibration|long exact sequence of homotopy groups]] for fiber bundles).<ref>{{harvnb|Hall|2015}} Section 13.2</ref> The {{math|SU(2)}}-bundles over {{math|''S''<sup>5</sup>}} are classified by <math>\pi_4\mathord\left(S^3\right) = \mathbb{Z}_2</math> since any such bundle can be constructed by looking at trivial bundles on the two hemispheres <math>S^5_\text{N}, S^5_\text{S}</math> and looking at the transition function on their intersection, which is a copy of {{math|''S''<sup>4</sup>}}, so <math display="block">S^5_\text{N} \cap S^5_\text{S} \simeq S^4</math> Then, all such transition functions are classified by homotopy classes of maps <math display="block">\left[S^4, \mathrm{SU}(2)\right] \cong \left[S^4, S^3\right] = \pi_4\mathord\left(S^3\right) \cong \mathbb{Z}/2</math> and as <math>\pi_4(\mathrm{SU}(3)) = \{0\}</math> rather than <math>\mathbb{Z}/2</math>, {{math|SU(3)}} cannot be the trivial bundle {{math|SU(2) × ''S''<sup>5</sup> ≅ ''S''<sup>3</sup> × ''S''<sup>5</sup>}}, and therefore must be the unique nontrivial (twisted) bundle. This can be shown by looking at the induced long exact sequence on homotopy groups. === Representation theory === The representation theory of {{math|SU(3)}} is well-understood.<ref>{{harvnb|Hall|2015}} Chapter 6</ref> Descriptions of these representations, from the point of view of its complexified Lie algebra <math>\mathfrak{sl}(3; \mathbb{C})</math>, may be found in the articles on [[Lie algebra representation#Classifying finite-dimensional representations of Lie algebras|Lie algebra representations]] or [[Clebsch–Gordan coefficients for SU(3)#Representations of the SU(3) group|the Clebsch–Gordan coefficients for {{math|SU(3)}}]]. === Lie algebra === The generators, {{mvar|T}}, of the Lie algebra <math>\mathfrak{su}(3)</math> of {{math|SU(3)}} in the defining (particle physics, Hermitian) representation, are <math display="block">T_a = \frac{\lambda_a}{2}~, </math> where {{math|''λ''<sub>a</sub>}}, the [[Gell-Mann matrices]], are the {{math|SU(3)}} analog of the [[Pauli matrices]] for {{math|SU(2)}}: <math display="block">\begin{align} \lambda_1 ={} &\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_2 ={} &\begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \lambda_3 ={} &\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\[6pt] \lambda_4 ={} &\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, & \lambda_5 ={} &\begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \\[6pt] \lambda_6 ={} &\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, & \lambda_7 ={} &\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, & \lambda_8 = \frac{1}{\sqrt{3}} &\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \end{align}</math> These {{math|''λ''<sub>a</sub>}} span all [[trace (linear algebra)|traceless]] [[Hermitian matrix|Hermitian matrices]] {{mvar|H}} of the [[Lie algebra]], as required. Note that {{math|''λ''<sub>2</sub>, ''λ''<sub>5</sub>, ''λ''<sub>7</sub>}} are antisymmetric. They obey the relations <math display="block">\begin{align} \left[T_a, T_b\right] &= i \sum_{c=1}^8 f_{abc} T_c, \\ \left\{T_a, T_b\right\} &= \frac{1}{3} \delta_{ab} I_3 + \sum_{c=1}^8 d_{abc} T_c, \end{align}</math> or, equivalently, <math display="block">\begin{align} \left[\lambda_a, \lambda_b\right] &= 2i \sum_{c=1}^8 f_{abc} \lambda_c, \\ \{\lambda_a, \lambda_b\} &= \frac{4}{3}\delta_{ab} I_3 + 2\sum_{c=1}^8{d_{abc} \lambda_c}. \end{align}</math> The {{mvar|f}} are the [[structure constants]] of the Lie algebra, given by <math display="block">\begin{align} f_{123} &= 1, \\ f_{147} = -f_{156} = f_{246} = f_{257} = f_{345} = -f_{367} &= \frac{1}{2}, \\ f_{458} = f_{678} &= \frac{\sqrt{3}}{2}, \end{align}</math> while all other {{math|''f<sub>abc</sub>''}} not related to these by permutation are zero. In general, they vanish unless they contain an odd number of indices from the set {{math|{{mset|2, 5, 7}}}}.{{efn|So fewer than {{frac|1|6}} of all {{math|''f<sub>abc</sub>''}}s are non-vanishing.}} The symmetric coefficients {{math|''d''}} take the values <math display="block">\begin{align} d_{118} = d_{228} = d_{338} = -d_{888} &= \frac{1}{\sqrt{3}} \\ d_{448} = d_{558} = d_{668} = d_{778} &= -\frac{1}{2\sqrt{3}} \\ d_{344} = d_{355} = -d_{366} = -d_{377} = -d_{247} = d_{146} = d_{157} = d_{256} &= \frac{1}{2} ~. \end{align}</math> They vanish if the number of indices from the set {{math|{{mset|2, 5, 7}}}} is odd. A generic {{math|SU(3)}} group element generated by a traceless 3×3 Hermitian matrix {{mvar|H}}, normalized as {{math|tr(''H''<sup>2</sup>) {{=}} 2}}, can be expressed as a ''second order'' matrix polynomial in {{mvar|H}}:<ref>{{cite journal|last1=Rosen|first1=S P|title=Finite Transformations in Various Representations of SU(3)|journal=Journal of Mathematical Physics|volume=12|issue=4|year=1971|pages=673–681 |doi=10.1063/1.1665634|bibcode=1971JMP....12..673R}}; {{cite journal|doi=10.1016/S0034-4877(15)30040-9|title= Elementary results for the fundamental representation of SU(3)|author1= Curtright, T L|author2=Zachos, C K|year=2015|journal=Reports on Mathematical Physics|volume=76|issue=3|pages=401–404|bibcode=2015RpMP...76..401C|arxiv=1508.00868|s2cid= 119679825}}</ref> <math display="block">\begin{align} \exp(i\theta H) ={} &\left[-\frac{1}{3} I\sin\left(\varphi + \frac{2\pi}{3}\right) \sin\left(\varphi - \frac{2\pi}{3}\right) - \frac{1}{2\sqrt{3}}~H\sin(\varphi) - \frac{1}{4}~H^2\right] \frac{\exp\left(\frac{2}{\sqrt{3}}~i\theta\sin(\varphi)\right)} {\cos\left(\varphi + \frac{2\pi}{3}\right) \cos\left(\varphi - \frac{2\pi}{3}\right)} \\[6pt] & {} + \left[-\frac{1}{3}~I\sin(\varphi) \sin\left(\varphi - \frac{2\pi}{3}\right) - \frac{1}{2\sqrt{3}}~H\sin\left(\varphi + \frac{2\pi}{3}\right) - \frac{1}{4}~H^{2}\right] \frac{\exp\left(\frac{2}{\sqrt{3}}~i\theta \sin\left(\varphi + \frac{2\pi}{3}\right)\right)} {\cos(\varphi) \cos\left(\varphi - \frac{2\pi}{3}\right)} \\[6pt] & {} + \left[-\frac{1}{3}~I\sin(\varphi) \sin\left(\varphi + \frac{2\pi}{3}\right) - \frac{1}{2\sqrt{3}}~H \sin\left(\varphi - \frac{2\pi}{3}\right) - \frac{1}{4}~H^2\right] \frac{\exp\left(\frac{2}{\sqrt{3}}~i\theta \sin\left(\varphi - \frac{2\pi}{3}\right)\right)} {\cos(\varphi)\cos\left(\varphi + \frac{2\pi}{3}\right)} \end{align}</math> LP where <math display="block">\varphi \equiv \frac{1}{3}\left[\arccos\left(\frac{3\sqrt{3}}{2}\det H\right) - \frac{\pi}{2}\right].</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Special unitary group
(section)
Add topic