Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Simple group
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Tests for nonsimplicity== ''[[Sylow theorems#Example applications|Sylow's test]]'': Let ''n'' be a positive integer that is not prime, and let ''p'' be a prime divisor of ''n''. If 1 is the only divisor of ''n'' that is congruent to 1 modulo ''p'', then there does not exist a simple group of order ''n''. Proof: If ''n'' is a prime-power, then a group of order ''n'' has a nontrivial [[center (group theory)|center]]<ref>See the proof in [[p-group|''p''-group]], for instance.</ref> and, therefore, is not simple. If ''n'' is not a prime power, then every Sylow subgroup is proper, and, by [[Sylow theorems|Sylow's Third Theorem]], we know that the number of Sylow ''p''-subgroups of a group of order ''n'' is equal to 1 modulo ''p'' and divides ''n''. Since 1 is the only such number, the Sylow ''p''-subgroup is unique, and therefore it is normal. Since it is a proper, non-identity subgroup, the group is not simple. ''Burnside'': A non-Abelian finite simple group has order divisible by at least three distinct primes. This follows from [[Burnside's theorem]].
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Simple group
(section)
Add topic