Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Riesz representation theorem
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Relationship with the associated real Hilbert space === {{See also|Complexification}} Assume that <math>H</math> is a complex Hilbert space with inner product <math>\langle \,\cdot\mid\cdot\, \rangle.</math> When the Hilbert space <math>H</math> is reinterpreted as a real Hilbert space then it will be denoted by <math>H_{\R},</math> where the (real) inner-product on <math>H_{\R}</math> is the real part of <math>H</math>'s inner product; that is: <math display=block>\langle x, y \rangle_{\R} := \operatorname{re} \langle x, y \rangle.</math> The norm on <math>H_{\R}</math> induced by <math>\langle \,\cdot\,, \,\cdot\, \rangle_{\R}</math> is equal to the original norm on <math>H</math> and the continuous dual space of <math>H_{\R}</math> is the set of all {{em|real}}-valued bounded <math>\R</math>-linear functionals on <math>H_{\R}</math> (see the article about the [[polarization identity]] for additional details about this relationship). Let <math>\psi_{\R} := \operatorname{re} \psi</math> and <math>\psi_{i} := \operatorname{im} \psi</math> denote the real and imaginary parts of a linear functional <math>\psi,</math> so that <math>\psi = \operatorname{re} \psi + i \operatorname{im} \psi = \psi_{\R} + i \psi_{i}.</math> The formula [[Real and imaginary parts of a linear functional|expressing a linear functional]] in terms of its real part is <math display=block>\psi(h) = \psi_{\R}(h) - i \psi_{\R} (i h) \quad \text{ for } h \in H,</math> where <math>\psi_{i}(h) = - i \psi_{\R} (i h)</math> for all <math>h \in H.</math> It follows that <math>\ker\psi_{\R} = \psi^{-1}(i \R),</math> and that <math>\psi = 0</math> if and only if <math>\psi_{\R} = 0.</math> It can also be shown that <math>\|\psi\| = \left\|\psi_{\R}\right\| = \left\|\psi_i\right\|</math> where <math>\left\|\psi_{\R}\right\| := \sup_{\|h\| \leq 1} \left|\psi_{\R}(h)\right|</math> and <math>\left\|\psi_i\right\| := \sup_{\|h\| \leq 1} \left|\psi_i(h)\right|</math> are the usual [[operator norm]]s. In particular, a linear functional <math>\psi</math> is bounded if and only if its real part <math>\psi_{\R}</math> is bounded. '''Representing a functional and its real part''' The Riesz representation of a continuous linear function <math>\varphi</math> on a complex Hilbert space is equal to the Riesz representation of its real part <math>\operatorname{re} \varphi</math> on its associated real Hilbert space. Explicitly, let <math>\varphi \in H^*</math> and as above, let <math>f_\varphi \in H</math> be the Riesz representation of <math>\varphi</math> obtained in <math>(H, \langle, \cdot, \cdot \rangle),</math> so it is the unique vector that satisfies <math>\varphi(x) = \left\langle f_{\varphi} \mid x \right\rangle</math> for all <math>x \in H.</math> The real part of <math>\varphi</math> is a continuous real linear functional on <math>H_{\R}</math> and so the Riesz representation theorem may be applied to <math>\varphi_{\R} := \operatorname{re} \varphi</math> and the associated real Hilbert space <math>\left(H_{\R}, \langle, \cdot, \cdot \rangle_{\R}\right)</math> to produce its Riesz representation, which will be denoted by <math>f_{\varphi_{\R}}.</math> That is, <math>f_{\varphi_{\R}}</math> is the unique vector in <math>H_{\R}</math> that satisfies <math>\varphi_{\R}(x) = \left\langle f_{\varphi_{\R}} \mid x \right\rangle_{\R}</math> for all <math>x \in H.</math> The conclusion is <math>f_{\varphi_{\R}} = f_{\varphi}.</math> This follows from the main theorem because <math>\ker\varphi_{\R} = \varphi^{-1}(i \R)</math> and if <math>x \in H</math> then <math display=block>\left\langle f_\varphi \mid x \right\rangle_{\R} = \operatorname{re} \left\langle f_\varphi \mid x \right\rangle = \operatorname{re} \varphi(x) = \varphi_{\R}(x)</math> and consequently, if <math>m \in \ker\varphi_{\R}</math> then <math>\left\langle f_{\varphi}\mid m \right\rangle_{\R} = 0,</math> which shows that <math>f_{\varphi} \in (\ker\varphi_{\R})^{\perp_{\R}}.</math> Moreover, <math>\varphi(f_\varphi) = \|\varphi\|^2</math> being a real number implies that <math>\varphi_{\R} (f_\varphi) = \operatorname{re} \varphi(f_\varphi) = \|\varphi\|^2.</math> In other words, in the theorem and constructions above, if <math>H</math> is replaced with its real Hilbert space counterpart <math>H_{\R}</math> and if <math>\varphi</math> is replaced with <math>\operatorname{re} \varphi</math> then <math>f_{\varphi} = f_{\operatorname{re} \varphi}.</math> This means that vector <math>f_{\varphi}</math> obtained by using <math>\left(H_{\R}, \langle, \cdot, \cdot \rangle_{\R}\right)</math> and the real linear functional <math>\operatorname{re} \varphi</math> is the equal to the vector obtained by using the origin complex Hilbert space <math>\left(H, \left\langle, \cdot, \cdot \right\rangle\right)</math> and original complex linear functional <math>\varphi</math> (with identical norm values as well). Furthermore, if <math>\varphi \neq 0</math> then <math>f_{\varphi}</math> is perpendicular to <math>\ker\varphi_{\R}</math> with respect to <math>\langle \cdot, \cdot \rangle_{\R}</math> where the kernel of <math>\varphi</math> is be a ''proper'' subspace of the kernel of its real part <math>\varphi_{\R}.</math> Assume now that <math>\varphi \neq 0.</math> Then <math>f_{\varphi} \not\in \ker\varphi_{\R}</math> because <math>\varphi_{\R}\left(f_{\varphi}\right) = \varphi\left(f_{\varphi}\right) = \|\varphi\|^2 \neq 0</math> and <math>\ker\varphi</math> is a proper subset of <math>\ker\varphi_{\R}.</math> The vector subspace <math>\ker \varphi</math> has real codimension <math>1</math> in <math>\ker\varphi_{\R},</math> while <math>\ker\varphi_{\R}</math> has {{em|real}} codimension <math>1</math> in <math>H_{\R},</math> and <math>\left\langle f_{\varphi}, \ker\varphi_{\R} \right\rangle_{\R} = 0.</math> That is, <math>f_{\varphi}</math> is perpendicular to <math>\ker\varphi_{\R}</math> with respect to <math>\langle \cdot, \cdot \rangle_{\R}.</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Riesz representation theorem
(section)
Add topic