Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Polygon
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Simple polygons==== {{further|Shoelace formula}} If the polygon is non-self-intersecting (that is, [[simple polygon|simple]]), the signed [[area (geometry)|area]] is :<math>A = \frac{1}{2} \sum_{i = 0}^{n - 1}( x_i y_{i + 1} - x_{i + 1} y_i) \quad \text {where } x_{n}=x_{0} \text{ and } y_n=y_{0}, </math> or, using [[determinant]]s :<math>16 A^{2} = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \begin{vmatrix} Q_{i,j} & Q_{i,j+1} \\ Q_{i+1,j} & Q_{i+1,j+1} \end{vmatrix} , </math> where <math> Q_{i,j} </math> is the squared distance between <math>(x_i, y_i)</math> and <math>(x_j, y_j).</math><ref>B.Sz. Nagy, L. Rédey: Eine Verallgemeinerung der Inhaltsformel von Heron. Publ. Math. Debrecen 1, 42–50 (1949)</ref><ref>{{cite web |url = http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf |title = Calculating The Area And Centroid Of A Polygon |last = Bourke |first = Paul |date = July 1988 |access-date = 6 Feb 2013 |archive-date = 16 September 2012 |archive-url = https://web.archive.org/web/20120916104133/http://www.seas.upenn.edu/~sys502/extra_materials/Polygon%20Area%20and%20Centroid.pdf |url-status = dead }}</ref> The signed area depends on the ordering of the vertices and of the [[orientation (vector space)|orientation]] of the plane. Commonly, the positive orientation is defined by the (counterclockwise) rotation that maps the positive {{mvar|x}}-axis to the positive {{mvar|y}}-axis. If the vertices are ordered counterclockwise (that is, according to positive orientation), the signed area is positive; otherwise, it is negative. In either case, the area formula is correct in [[absolute value]]. This is commonly called the ''[[shoelace formula]]'' or ''surveyor's formula''.<ref>{{cite journal |author=Bart Braden |title=The Surveyor's Area Formula |journal=The College Mathematics Journal |volume=17 |issue=4 |year=1986 |pages=326–337 |url=http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-url=https://web.archive.org/web/20121107190918/http://www.maa.org/pubs/Calc_articles/ma063.pdf|archive-date=2012-11-07 |doi=10.2307/2686282|jstor=2686282 }}</ref> The area ''A'' of a simple polygon can also be computed if the lengths of the sides, ''a''<sub>1</sub>, ''a''<sub>2</sub>, ..., ''a<sub>n</sub>'' and the [[exterior angle]]s, ''θ''<sub>1</sub>, ''θ''<sub>2</sub>, ..., ''θ<sub>n</sub>'' are known, from: :<math>\begin{align}A = \frac12 ( a_1[a_2 \sin(\theta_1) + a_3 \sin(\theta_1 + \theta_2) + \cdots + a_{n-1} \sin(\theta_1 + \theta_2 + \cdots + \theta_{n-2})] \\ {} + a_2[a_3 \sin(\theta_2) + a_4 \sin(\theta_2 + \theta_3) + \cdots + a_{n-1} \sin(\theta_2 + \cdots + \theta_{n-2})] \\ {} + \cdots + a_{n-2}[a_{n-1} \sin(\theta_{n-2})] ). \end{align}</math> The formula was described by Lopshits in 1963.<ref name="lopshits">{{cite book |title=Computation of areas of oriented figures |author=A.M. Lopshits |publisher=D C Heath and Company: Boston, MA |others=translators: J Massalski and C Mills Jr. |year=1963}}</ref> If the polygon can be drawn on an equally spaced grid such that all its vertices are grid points, [[Pick's theorem]] gives a simple formula for the polygon's area based on the numbers of interior and boundary grid points: the former number plus one-half the latter number, minus 1. In every polygon with perimeter ''p'' and area ''A '', the [[isoperimetric inequality]] <math>p^2 > 4\pi A</math> holds.<ref>{{cite web| url = http://forumgeom.fau.edu/FG2002volume2/FG200215.pdf| title = Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", ''Forum Mathematicorum'' 2, 2002, 129–130.}}</ref> For any two simple polygons of equal area, the [[Bolyai–Gerwien theorem]] asserts that the first can be cut into polygonal pieces which can be reassembled to form the second polygon. The lengths of the sides of a polygon do not in general determine its area.<ref>Robbins, "Polygons inscribed in a circle", ''American Mathematical Monthly'' 102, June–July 1995.</ref> However, if the polygon is simple and cyclic then the sides ''do'' determine the area.<ref>{{cite journal|last=Pak|first=Igor|author-link=Igor Pak|doi=10.1016/j.aam.2004.08.006|issue=4|journal=[[Advances in Applied Mathematics]]|mr=2128993|pages=690–696|title=The area of cyclic polygons: recent progress on Robbins' conjectures|volume=34|year=2005|arxiv=math/0408104|s2cid=6756387}}</ref> Of all ''n''-gons with given side lengths, the one with the largest area is cyclic. Of all ''n''-gons with a given perimeter, the one with the largest area is regular (and therefore cyclic).<ref>Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in ''Mathematical Plums'' (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Polygon
(section)
Add topic