Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Parallel computing
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Instruction-level parallelism=== {{main|Instruction-level parallelism}} [[File:Nopipeline.png|thumb|300px|A canonical processor without [[Instruction pipelining|pipeline]]. It takes five clock cycles to complete one instruction and thus the processor can issue subscalar performance ({{nobreak|1=IPC = 0.2 < 1}}).]] A computer program is, in essence, a stream of instructions executed by a processor. Without instruction-level parallelism, a processor can only issue less than one [[Instructions per cycle|instruction per clock cycle]] ({{nobreak|IPC < 1}}). These processors are known as ''subscalar'' processors. These instructions can be [[Out-of-order execution|re-ordered]] and combined into groups which are then executed in parallel without changing the result of the program. This is known as instruction-level parallelism. Advances in instruction-level parallelism dominated computer architecture from the mid-1980s until the mid-1990s.<ref>Culler et al. p. 15.</ref> [[File:Fivestagespipeline.png|thumb|300px|A canonical five-stage [[Instruction pipelining|pipelined]] processor. In the best case scenario, it takes one clock cycle to complete one instruction and thus the processor can issue scalar performance ({{nobreak|1=IPC = 1}}).]] All modern processors have multi-stage [[Instruction pipelining|instruction pipelines]]. Each stage in the pipeline corresponds to a different action the processor performs on that instruction in that stage; a processor with an ''N''-stage pipeline can have up to ''N'' different instructions at different stages of completion and thus can issue one instruction per clock cycle ({{nobreak|1=IPC = 1}}). These processors are known as ''scalar'' processors. The canonical example of a pipelined processor is a [[RISC]] processor, with five stages: instruction fetch (IF), instruction decode (ID), execute (EX), memory access (MEM), and register write back (WB). The [[Pentium 4]] processor had a 35-stage pipeline.<ref>[[Yale Patt|Patt, Yale]] (April 2004). "[http://users.ece.utexas.edu/~patt/Videos/talk_videos/cmu_04-29-04.wmv The Microprocessor Ten Years From Now: What Are The Challenges, How Do We Meet Them?] {{webarchive|url=https://web.archive.org/web/20080414141000/http://users.ece.utexas.edu/~patt/Videos/talk_videos/cmu_04-29-04.wmv |date=2008-04-14 }} (wmv). Distinguished Lecturer talk at [[Carnegie Mellon University]]. Retrieved on November 7, 2007.</ref> [[File:Superscalarpipeline.svg|thumb|300px|A canonical five-stage [[Instruction pipelining|pipelined]] processor with two execution units. In the best case scenario, it takes one clock cycle to complete two instructions and thus the processor can issue superscalar performance ({{nobreak|1=IPC = 2 > 1}}).]] Most modern processors also have multiple [[execution unit]]s. They usually combine this feature with pipelining and thus can issue more than one instruction per clock cycle ({{nobreak|IPC > 1}}). These processors are known as ''[[superscalar]]'' processors. Superscalar processors differ from [[multi-core processor]]s in that the several execution units are not entire processors (i.e. processing units). Instructions can be grouped together only if there is no [[data dependency]] between them. [[Scoreboarding]] and the [[Tomasulo algorithm]] (which is similar to scoreboarding but makes use of [[register renaming]]) are two of the most common techniques for implementing out-of-order execution and instruction-level parallelism.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Parallel computing
(section)
Add topic