Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Linear motor
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Low acceleration === The history of linear electric motors can be traced back at least as far as the 1840s, to the work of [[Charles Wheatstone]] at [[King's College London]],<ref>{{cite web|url=http://www.kcl.ac.uk/college/history/people/wheatstone.html |title=Charles Wheatstone - College History - King's College London |publisher=Kcl.ac.uk |access-date=2010-03-01 |url-status=dead |archive-url=https://web.archive.org/web/20091021162729/http://www.kcl.ac.uk/college/history/people/wheatstone.html |archive-date=2009-10-21 }}</ref> but Wheatstone's model was too inefficient to be practical. A feasible linear induction motor is described in {{US patent|782312}} (1905 - inventor Alfred Zehden of Frankfurt-am-Main), for driving trains or lifts. The German engineer [[Hermann Kemper]] built a working model in 1935.<ref>{{cite web|url=http://cem.colorado.edu/archives/fl1997/thor.html |title=CEM - Fall/Winter 1997 Issue - Germany's Transrapid |access-date=2011-08-24 |url-status=dead |archive-url=https://web.archive.org/web/20110928000224/http://cem.colorado.edu/archives/fl1997/thor.html |archive-date=2011-09-28 }}</ref> In the late 1940s, Dr. [[Eric Laithwaite]] of [[University of Manchester|Manchester University]], later Professor of Heavy Electrical Engineering at [[Imperial College]] in [[London]] developed the first full-size working model. In a single sided version the magnetic repulsion forces the conductor away from the stator, levitating it, and carrying it along in the direction of the moving magnetic field. He called the later versions of it [[magnetic river]]. The technologies would later be applied, in the 1984, [[Air-Rail Link#Maglev|Air-Rail Link]] shuttle, between Birmingham's airport and an adjacent train station. [[File:Linear Motor of Toei Ōedo Line.jpg|thumb|right|200px|A linear motor for trains running [[Toei Ōedo Line]]]] Because of these properties, linear motors are often used in [[magnetic levitation|maglev]] propulsion, as in the Japanese [[Linimo]] [[magnetic levitation train]] line near [[Nagoya]]. However, linear motors have been used independently of magnetic levitation, as in the [[Bombardier Innovia Metro]] systems worldwide and a number of modern Japanese subways, including [[Tokyo]]'s [[Toei Ōedo Line]]. Similar technology is also used in some [[roller coaster]]s with modifications but, at present, is still impractical on street running [[tram]]s, although this, in theory, could be done by burying it in a slotted conduit. Outside of public transportation, vertical linear motors have been proposed as lifting mechanisms in deep [[mining|mine]]s, and the use of linear motors is growing in [[motion control]] applications. They are also often used on sliding doors, such as those of [[low floor]] trams such as the [[Alstom Citadis]] and the [[Socimi Eurotram]]. Dual axis linear motors also exist. These specialized devices have been used to provide direct ''X''-''Y'' motion for precision laser cutting of cloth and sheet metal, automated [[Technical drawing|drafting]], and cable forming. Most linear motors in use are LIM (linear induction motor), or LSM (linear synchronous motor). Linear DC motors are not used due to their higher cost and linear SRM suffers from poor thrust. So for long runs in traction LIM is mostly preferred and for short runs LSM is mostly preferred. [[File:Linear motor platen surface.jpg|thumb|right|Close-up of the flat passive conductor surface of a motion control [[Sawyer motor]] ]]
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Linear motor
(section)
Add topic