Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
L'Hôpital's rule
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Other indeterminate forms == Other indeterminate forms, such as {{math|1<sup>∞</sup>}}, {{math|0<sup>0</sup>}}, {{math|∞<sup>0</sup>}}, {{math|0 · ∞}}, and {{math|∞ − ∞}}, can sometimes be evaluated using L'Hôpital's rule. We again indicate applications of L'Hopital's rule by <math> \ \stackrel{\mathrm{H}}{=}\ </math>. For example, to evaluate a limit involving {{math|∞ − ∞}}, convert the difference of two functions to a quotient: :<math> \begin{align} \lim_{x\to 1}\left(\frac{x}{x-1}-\frac1{\ln x}\right) & = \lim_{x\to 1}\frac{x\cdot\ln x -x+1}{(x-1)\cdot\ln x} \\[6pt] & \ \stackrel{\mathrm{H}}{=}\ \lim_{x\to 1}\frac{\ln x}{\frac{x-1}{x}+\ln x} \\[6pt] & = \lim_{x\to 1}\frac{x\cdot\ln x}{x-1+x\cdot\ln x} \\[6pt] & \ \stackrel{\mathrm{H}}{=}\ \lim_{x\to 1}\frac{1+\ln x}{1+1+\ln x} = \frac{1+0}{1+1+0}. \end{align} </math> L'Hôpital's rule can be used on indeterminate forms involving [[Exponentiation|exponents]] by using [[logarithm]]s to "move the exponent down". Here is an example involving the indeterminate form {{math|0<sup>0</sup>}}: :<math> \lim_{x\to 0^+\!}x^x = \lim_{x\to 0^+\!}e^{\ln (x^x)} = \lim_{x\to 0^+\!}e^{x\cdot\ln x} = \lim_{x\to 0^+\!}\exp(x\cdot\ln x) = \exp({\lim\limits_{x\to 0^+\!\!}\,x\cdot\ln x}). </math> It is valid to move the limit inside the [[exponential function]] because this function is [[continuous function|continuous]]. Now the exponent <math>x</math> has been "moved down". The limit <math>\lim_{x\to 0^+}x\cdot\ln x</math> is of the indeterminate form {{math|0 · ∞}} dealt with in an example above: L'Hôpital may be used to determine that :<math>\lim_{x\to 0^+}x\cdot\ln x = 0.</math> Thus :<math>\lim_{x\to 0^+}x^x =\exp(0) = e^0 = 1.</math> The following table lists the most common indeterminate forms and the transformations which precede applying l'Hôpital's rule: {| class="wikitable" style="background-color: #ffffff; width: 70%;" !Indeterminate form with f & g !Conditions !Transformation to <math>0/0</math> |- |{{sfrac|0|0}} |<math> \lim_{x \to c} f(x) = 0,\ \lim_{x \to c} g(x) = 0 \! </math> |{{center|—}} |- |{{sfrac|<math>\infty</math>|<math>\infty</math>}} |<math> \lim_{x \to c} f(x) = \infty,\ \lim_{x \to c} g(x) = \infty \! </math> |<math> \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{1/g(x)}{1/f(x)} \! </math> |- |<math>0\cdot\infty</math> |<math> \lim_{x \to c} f(x) = 0,\ \lim_{x \to c} g(x) = \infty \! </math> |<math> \lim_{x \to c} f(x)g(x) = \lim_{x \to c} \frac{f(x)}{1/g(x)} \! </math> |- |<math>\infty - \infty</math> |<math> \lim_{x \to c} f(x) = \infty,\ \lim_{x \to c} g(x) = \infty \! </math> |<math> \lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} \frac{1/g(x) - 1/f(x)}{1/(f(x)g(x))} \! </math> |- |<math>0^0</math> |<math> \lim_{x \to c} f(x) = 0^+, \lim_{x \to c} g(x) = 0 \! </math> |<math> \lim_{x \to c} f(x)^{g(x)} = \exp \lim_{x \to c} \frac{g(x)}{1/\ln f(x)} \! </math> |- |<math>1^\infty</math> |<math> \lim_{x \to c} f(x) = 1,\ \lim_{x \to c} g(x) = \infty \! </math> |<math> \lim_{x \to c} f(x)^{g(x)} = \exp \lim_{x \to c} \frac{\ln f(x)}{1/g(x)} \! </math> |- |<math>\infty^0</math> |<math> \lim_{x \to c} f(x) = \infty,\ \lim_{x \to c} g(x) = 0 \! </math> |<math> \lim_{x \to c} f(x)^{g(x)} = \exp \lim_{x \to c} \frac{g(x)}{1/\ln f(x)} \! </math> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
L'Hôpital's rule
(section)
Add topic