Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Ion implantation
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Other applications== ===Ion beam mixing=== Ion implantation can be used to achieve [[ion beam mixing]], i.e. mixing up atoms of different elements at an interface. This may be useful for achieving graded interfaces or strengthening adhesion between layers of immiscible materials. ===Ion implantation-induced [[nanoparticle]] formation=== Ion implantation may be used to induce nano-dimensional particles in oxides such as [[sapphire]] and [[silica]]. The particles may be formed as a result of precipitation of the ion implanted species, they may be formed as a result of the production of a mixed oxide species that contains both the ion-implanted element and the oxide substrate, and they may be formed as a result of a reduction of the substrate, first reported by Hunt and Hampikian.<ref name="Hunt">{{cite journal|last1=Hunt|first1=Eden|last2=Hampikian|first2=Janet|title=Ion implantation-induced nanoscale particle formation in Al2O3 and SiO2 via reduction|journal=Acta Materialia|date=1999|volume=47|issue=5|pages=1497–1511|doi=10.1016/S1359-6454(99)00028-2|bibcode=1999AcMat..47.1497H}}</ref><ref name="Hunt2">{{cite journal|last1=Hunt|first1=Eden|last2=Hampikian|first2=Janet|title=Implantation parameters affecting aluminum nano-particle formation in alumina|journal=Journal of Materials Science|date=April 2001|volume=36|issue=8|pages=1963–1973|doi=10.1023/A:1017562311310|s2cid=134817579}}</ref><ref>{{cite web|last1=Hunt|first1=Eden|last2=Hampikian|first2=Janet|title=Method for ion implantation induced embedded particle formation via reduction|url=http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6294223.PN.&OS=PN/6294223&RS=PN/6294223|website=uspto.gov|publisher=USPTO|access-date=4 August 2017|archive-date=9 March 2020|archive-url=https://web.archive.org/web/20200309064900/http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=/netahtml/PTO/srchnum.htm&r=1&f=G&l=50&s1=6294223.PN.&OS=PN/6294223&RS=PN/6294223|url-status=dead}}</ref> Typical ion beam energies used to produce nanoparticles range from 50 to 150 keV, with ion fluences that range from 10<sup>16</sup> to 10<sup>18</sup> ions/cm<sup>2</sup>.<ref name="Werner">{{cite journal|last1=Werner|first1=Z.|last2=Pisarek|first2=M.|last3=Barlak|first3=M.|last4=Ratajczak|first4=R.|last5=Starosta|first5=W.|last6=Piekoszewski|first6=J.|last7=Szymczyk|first7=W.|last8=Grotzschel|first8=R.|title=Chemical effects in Zr- and Co-implanted sapphire|journal=Vacuum|date=2009|volume=83|pages=S57–S60|doi=10.1016/j.vacuum.2009.01.022|bibcode=2009Vacuu..83S..57W}}</ref><ref name="Alves">{{cite journal|last1=Alves|first1=E.|last2=Marques|first2=C.|last3=da Silva|first3=R.C.|last4=Monteiro|first4=T.|last5=Soares|first5=J.|last6=McHargue|first6=C.|last7=Ononye|first7=L.C.|last8=Allard|first8=L.F|title=Structural and optical studies of Co and Ti implanted sapphire|journal=Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms|date=2003|volume=207|issue=1|pages=55–62|doi=10.1016/S0168-583X(03)00522-6|bibcode=2003NIMPB.207...55A}}</ref><ref name="Xiang">{{cite journal |last1=Xiang |first1=X |last2=Zu |first2=X T |last3=Zhu |first3=S |last4=Wei |first4=Q M |last5=Zhang |first5=C F |last6=Sun |first6=K |last7=Wang |first7=L M |title=ZnO nanoparticles embedded in sapphire fabricated by ion implantation and annealing |journal=Nanotechnology |date=28 May 2006 |volume=17 |issue=10 |pages=2636–2640 |doi=10.1088/0957-4484/17/10/032 |pmid=21727517 |bibcode=2006Nanot..17.2636X |hdl=2027.42/49223 |hdl-access=free }}</ref><ref name="Mota-Santiago">{{cite journal|last1=Mota-Santiago|first1=Pablo-Ernesto|last2=Crespo-Sosa|first2=Alejandro|last3=Jimenez-Hernandez|first3=Jose-Luis|last4=Silva-Pereyra|first4=Hector-Gabriel|last5=Reyes-Esqueda|first5=Jorge-Alejandro|last6=Oliver|first6=Alicia|title=Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing|journal=Applied Surface Science|date=2012|volume=259|pages=574–581|doi=10.1016/j.apsusc.2012.06.114|bibcode=2012ApSS..259..574M}}</ref><ref name="Stepanov">{{cite journal|last1=Stepanov|first1=A. L.|last2=Marques|first2=C.|last3=Alves|first3=E.|last4=da Silva|first4=R. C.|last5=Silva|first5=M. R.|last6=Ganeev|first6=R. A.|last7=Ryasnyansky|first7=A. I.|last8=Usmanov|first8=T.|title=Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix|journal=Technical Physics Letters|date=2005|volume=31|issue=8|pages=702–705|doi=10.1134/1.2035371|bibcode=2005TePhL..31..702S|s2cid=123688388}}</ref><ref name="McHargue">{{cite journal|last1=McHargue|first1=C.J.|last2=Ren|first2=S.X.|last3=Hunn|first3=J.D|title=Nanometer-size dispersions of iron in sapphire prepared by ion implantation and annealing|journal=Materials Science and Engineering: A|date=1998|volume=253|issue=1|pages=1–7|doi=10.1016/S0921-5093(98)00722-9}}</ref><ref name="Xiang2">{{cite journal|last1=Xiang|first1=X.|last2=Zu|first2=X. T.|last3=Zhu|first3=S.|last4=Wang|first4=L. M.|title=Optical properties of metallic nanoparticles in Ni-ion-implanted α-Al2O3 single crystals|journal=Applied Physics Letters|date=2004|volume=84|issue=1|pages=52–54|doi=10.1063/1.1636817|bibcode=2004ApPhL..84...52X}}</ref><ref name="Sharma">{{cite journal|last1=Sharma|first1=S. K.|last2=Pujari|first2=P. K.|title=Embedded Si nanoclusters in α-alumina synthesized by ion implantation: An investigation using depth dependent Doppler broadening spectroscopy|journal=Journal of Alloys and Compounds|date=2017|volume=715|pages=247–253|doi=10.1016/j.jallcom.2017.04.285}}</ref><ref name="Xiang3">{{cite journal |last1=Xiang |first1=X |last2=Zu |first2=X T |last3=Zhu |first3=S |last4=Wang |first4=L M |last5=Shutthanandan |first5=V |last6=Nachimuthu |first6=P |last7=Zhang |first7=Y |title=Photoluminescence of SnO 2 nanoparticles embedded in Al 2 O 3 |journal=Journal of Physics D: Applied Physics |date=21 November 2008 |volume=41 |issue=22 |pages=225102 |doi=10.1088/0022-3727/41/22/225102 |hdl=2027.42/64215 |hdl-access=free }}</ref> The table below summarizes some of the work that has been done in this field for a sapphire substrate. A wide variety of nanoparticles can be formed, with size ranges from 1 nm on up to 20 nm and with compositions that can contain the implanted species, combinations of the implanted ion and substrate, or that are comprised solely from the cation associated with the substrate. Composite materials based on dielectrics such as sapphire that contain dispersed metal nanoparticles are promising materials for [[optoelectronics]] and [[nonlinear optics]].<ref name="Stepanov" /> {| class="wikitable" style="text-align:center" |- | ! Implanted Species ! Substrate ! Ion Beam Energy (keV) ! Fluence (ions/cm<sup>2</sup>) ! Post Implantation Heat Treatment ! Result ! Source |- ! rowspan=6 | Produces Oxides that Contain the Implanted Ion | Co | Al<sub>2</sub>O<sub>3</sub> | 65 | 5*10<sup>17</sup> | Annealing at 1400 °C | Forms Al<sub>2</sub>CoO<sub>4</sub> spinel |<ref name="Werner" /> |- | Co | α-Al<sub>2</sub>O<sub>3</sub> | 150 | 2*10<sup>17</sup> | Annealing at 1000 °C in oxidizing ambient | Forms Al<sub>2</sub>CoO<sub>4</sub> spinel |<ref name="Alves" /> |- | Mg | Al<sub>2</sub>O<sub>3</sub> | 150 | 5*10<sup>16</sup> | --- | Forms MgAl<sub>2</sub>O<sub>4</sub> platelets |<ref name="Hunt" /> |- | Sn | α-Al<sub>2</sub>O<sub>3</sub> | 60 | 1*10<sup>17</sup> | Annealing in O<sub>2</sub> atmosphere at 1000 °C for 1 hr | 30 nm SnO<sub>2</sub> nanoparticles form |<ref name="Xiang3" /> |- | Zn | α-Al<sub>2</sub>O<sub>3</sub> | 48 | 1*10<sup>17</sup> | Annealing in O<sub>2</sub> atmosphere at 600 °C | ZnO nanoparticles form |<ref name="Xiang" /> |- | Zr | Al<sub>2</sub>O<sub>3</sub> | 65 | 5*10<sup>17</sup> | Annealing at 1400 °C | ZrO<sub>2</sub> precipitates form |<ref name="Werner" /> |- ! rowspan=10 | Produces Metallic Nanoparticles from Implanted Species | Ag | α-Al<sub>2</sub>O<sub>3</sub> | 1500, 2000 | 2*10<sup>16</sup>, 8*10<sup>16</sup> | Annealing from 600 °C to 1100 °C in oxidizing, reducing, Ar or N<sub>2</sub> atmospheres | Ag nanoparticles in Al<sub>2</sub>O<sub>3</sub> matrix |<ref name="Mota-Santiago" /> |- | Au | α-Al<sub>2</sub>O<sub>3</sub> | 160 | 0.6*10<sup>17</sup>, 1*10<sup>16</sup> | 1 hr at 800 °C in air | Au nanoparticles in Al<sub>2</sub>O<sub>3</sub> matrix |<ref name="Stepanov" /> |- | Au | α-Al<sub>2</sub>O<sub>3</sub> | 1500, 2000 | 2*10<sup>16</sup>, 8*10<sup>16</sup> | Annealing from 600 °C to 1100 °C in oxidizing, reducing, Ar or N<sub>2</sub> atmospheres | Au nanoparticles in Al<sub>2</sub>O<sub>3</sub> matrix |<ref name="Mota-Santiago" /> |- | Co | α-Al<sub>2</sub>O<sub>3</sub> | 150 | <5*10<sup>16</sup> | Annealing at 1000 °C | Co nanoparticles in Al<sub>2</sub>O<sub>3</sub> matrix |<ref name="Alves" /> |- | Co | α-Al<sub>2</sub>O<sub>3</sub> | 150 | 2*10<sup>17</sup> | Annealing at 1000 °C in reducing ambient | Precipitation of metallic Co |<ref name="Alves" /> |- | Fe | α-Al<sub>2</sub>O<sub>3</sub> | 160 | 1*10<sup>16</sup> to 2*10<sup>17</sup> | Annealing for 1 hr from 700 °C to 1500 °C in reducing ambient | Fe nanocomposites |<ref name="McHargue" /> |- | Ni | α-Al<sub>2</sub>O<sub>3</sub> | 64 | 1*10<sup>17</sup> | --- | 1-5 nm Ni nanoparticles |<ref name="Xiang2" /> |- | Si | α-Al<sub>2</sub>O<sub>3</sub> | 50 | 2*10<sup>16</sup>, 8*10<sup>16</sup> | Annealing at 500 °C or 1000 °C for 30 min | Si nanoparticles in Al<sub>2</sub>O<sub>3</sub> |<ref name="Sharma" /> |- | Sn | α-Al<sub>2</sub>O<sub>3</sub> | 60 | 1*10<sup>17</sup> | --- | 15 nm tetragonal Sn nanoparticles |<ref name="Xiang3" /> |- | Ti | α-Al<sub>2</sub>O<sub>3</sub> | 100 | <5*10<sup>16</sup> | Annealing at 1000 °C | Ti nanoparticles in Al<sub>2</sub>O<sub>3</sub> |<ref name="Alves" /> |- ! rowspan=3 | Produces Metallic Nanoparticles from Substrate | Ca | Al<sub>2</sub>O<sub>3</sub> | 150 | 5*10<sup>16</sup> | --- | Al nanoparticles in amorphous matrix containing Al<sub>2</sub>O<sub>3</sub> and CaO |<ref name="Hunt" /> |- | Y | Al<sub>2</sub>O<sub>3</sub> | 150 | 5*10<sup>16</sup> | --- | 10.7± 1.8 nm Al particles in amorphous matrix containing Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> |<ref name="Hunt" /> |- | Y | Al<sub>2</sub>O<sub>3</sub> | 150 | 2.5*10<sup>16</sup> | --- | 9.0± 1.2 nm Al particles in amorphous matrix containing Al<sub>2</sub>O<sub>3</sub> and Y<sub>2</sub>O<sub>3</sub> |<ref name="Hunt2" /> |}
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Ion implantation
(section)
Add topic