Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Hyperbolic functions
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Useful relations== {{Anchor|Osborn}} The hyperbolic functions satisfy many identities, all of them similar in form to the [[trigonometric identity|trigonometric identities]]. In fact, '''Osborn's rule'''<ref name="Osborn, 1902" /> states that one can convert any trigonometric identity (up to but not including sinhs or implied sinhs of 4th degree) for <math>\theta</math>, <math>2\theta</math>, <math>3\theta</math> or <math>\theta</math> and <math>\varphi</math> into a hyperbolic identity, by: # expanding it completely in terms of integral powers of sines and cosines, # changing sine to sinh and cosine to cosh, and # switching the sign of every term containing a product of two sinhs. Odd and even functions: <math display="block">\begin{align} \sinh (-x) &= -\sinh x \\ \cosh (-x) &= \cosh x \end{align}</math> Hence: <math display="block">\begin{align} \tanh (-x) &= -\tanh x \\ \coth (-x) &= -\coth x \\ \operatorname{sech} (-x) &= \operatorname{sech} x \\ \operatorname{csch} (-x) &= -\operatorname{csch} x \end{align}</math> Thus, {{math|cosh ''x''}} and {{math|sech ''x''}} are [[even function]]s; the others are [[odd functions]]. <math display="block">\begin{align} \operatorname{arsech} x &= \operatorname{arcosh} \left(\frac{1}{x}\right) \\ \operatorname{arcsch} x &= \operatorname{arsinh} \left(\frac{1}{x}\right) \\ \operatorname{arcoth} x &= \operatorname{artanh} \left(\frac{1}{x}\right) \end{align}</math> Hyperbolic sine and cosine satisfy: <math display="block">\begin{align} \cosh x + \sinh x &= e^x \\ \cosh x - \sinh x &= e^{-x} \end{align}</math> which are analogous to [[Euler's formula]], and <math display="block"> \cosh^2 x - \sinh^2 x = 1 </math> which is analogous to the [[Pythagorean trigonometric identity]]. One also has <math display="block">\begin{align} \operatorname{sech} ^{2} x &= 1 - \tanh^{2} x \\ \operatorname{csch} ^{2} x &= \coth^{2} x - 1 \end{align}</math> for the other functions. ===Sums of arguments=== <math display="block">\begin{align} \sinh(x + y) &= \sinh x \cosh y + \cosh x \sinh y \\ \cosh(x + y) &= \cosh x \cosh y + \sinh x \sinh y \\ \tanh(x + y) &= \frac{\tanh x +\tanh y}{1+ \tanh x \tanh y } \\ \end{align}</math> particularly <math display="block">\begin{align} \cosh (2x) &= \sinh^2{x} + \cosh^2{x} = 2\sinh^2 x + 1 = 2\cosh^2 x - 1 \\ \sinh (2x) &= 2\sinh x \cosh x \\ \tanh (2x) &= \frac{2\tanh x}{1+ \tanh^2 x } \\ \end{align}</math> Also: <math display="block">\begin{align} \sinh x + \sinh y &= 2 \sinh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\ \cosh x + \cosh y &= 2 \cosh \left(\frac{x+y}{2}\right) \cosh \left(\frac{x-y}{2}\right)\\ \end{align}</math> ===Subtraction formulas=== <math display="block">\begin{align} \sinh(x - y) &= \sinh x \cosh y - \cosh x \sinh y \\ \cosh(x - y) &= \cosh x \cosh y - \sinh x \sinh y \\ \tanh(x - y) &= \frac{\tanh x -\tanh y}{1- \tanh x \tanh y } \\ \end{align}</math> Also:<ref>{{cite book|last1=Martin|first1=George E.|title=The foundations of geometry and the non-Euclidean plane|date=1986 | publisher=Springer-Verlag|location=New York|isbn=3-540-90694-0|page=416|edition=1st corr.}}</ref> <math display="block">\begin{align} \sinh x - \sinh y &= 2 \cosh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\ \cosh x - \cosh y &= 2 \sinh \left(\frac{x+y}{2}\right) \sinh \left(\frac{x-y}{2}\right)\\ \end{align}</math> ===Half argument formulas=== <math display="block">\begin{align} \sinh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\sqrt{2 (\cosh x + 1)} } &&= \sgn x \, \sqrt \frac{\cosh x - 1}{2} \\[6px] \cosh\left(\frac{x}{2}\right) &= \sqrt \frac{\cosh x + 1}{2}\\[6px] \tanh\left(\frac{x}{2}\right) &= \frac{\sinh x}{\cosh x + 1} &&= \sgn x \, \sqrt \frac{\cosh x-1}{\cosh x+1} = \frac{e^x - 1}{e^x + 1} \end{align}</math> where {{math|sgn}} is the [[sign function]]. If {{math|''x'' β 0}}, then<ref>{{cite web|title=Prove the identity tanh(x/2) = (cosh(x) - 1)/sinh(x) | url=https://math.stackexchange.com/q/1565753 |website=[[StackExchange]] (mathematics) | access-date=24 January 2016}}</ref> <math display="block"> \tanh\left(\frac{x}{2}\right) = \frac{\cosh x - 1}{\sinh x} = \coth x - \operatorname{csch} x </math> ===Square formulas=== <math display="block">\begin{align} \sinh^2 x &= \tfrac{1}{2}(\cosh 2x - 1) \\ \cosh^2 x &= \tfrac{1}{2}(\cosh 2x + 1) \end{align}</math> ===Inequalities=== The following inequality is useful in statistics:<ref>{{cite news |last1=Audibert |first1=Jean-Yves |date=2009 |title=Fast learning rates in statistical inference through aggregation |publisher=The Annals of Statistics |page=1627}} [https://projecteuclid.org/download/pdfview_1/euclid.aos/1245332827]</ref> <math display="block">\operatorname{cosh}(t) \leq e^{t^2 /2}.</math> It can be proved by comparing the Taylor series of the two functions term by term.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Hyperbolic functions
(section)
Add topic