Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Heterodyne
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Output of a mixer=== To demonstrate mathematically how a nonlinear component can multiply signals and generate heterodyne frequencies, the nonlinear function <math>F</math> can be expanded in a [[power series]] ([[MacLaurin series]]): :<math>\ F(v) = \alpha_1 v + \alpha_2 v^2 + \alpha_3 v^3 + \cdots\ </math> To simplify the math, the higher order terms above {{math|''Ξ±''<sub>2</sub>}} are indicated by an ellipsis (<math>\ \cdots\ </math>) and only the first terms are shown. Applying the two sine waves at frequencies {{math|1=''Ο''<sub>1</sub> = 2{{pi}}''f''<sub>1</sub>}} and {{math|1=''Ο''<sub>2</sub> = 2{{pi}}''f''<sub>2</sub>}} to this device: :<math>\ v_\mathsf{out} = F\Bigl(A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \Bigr)\ </math> :<math>\ v_\mathsf{out} = \alpha_1 \Bigl( A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \Bigr) + \alpha_2 \Bigl( A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \Bigr)^2 + \cdots\ </math> :<math>\ v_\mathsf{out} = \alpha_1 \Bigl( A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t)\Bigr) + \alpha_2 \Bigl( A_1^2 \cos^2(\omega_1 t) + 2 A_1 A_2 \cos(\omega_1 t)\ \cos(\omega_2 t) + A_2^2 \cos^2(\omega_2 t) \Bigr) + \cdots\ </math> It can be seen that the second term above contains a product of the two sine waves. Simplifying with [[trigonometric identity|trigonometric identities]]: :<math> \begin{align} v_\mathsf{out} = {} & \alpha_1 \Bigl( A_1 \cos(\omega_1 t) + A_2 \cos(\omega_2 t) \Bigr) \\ & {} + \alpha_2 \Bigl( \tfrac{1}{2} A_1^2 [ 1 + \cos(2 \omega_1 t) ] + A_1 A_2 [\cos(\omega_1 t - \omega_2 t ) + \cos (\omega_1 t + \omega_2 t) ] + \tfrac{1}{2} A_2^2 [ 1 + \cos(2 \omega_2 t) ] \Bigr) + \cdots \end{align} </math> Which leaves the two heterodyne frequencies among the many terms: :<math>\ v_\mathsf{out} = \cdots + \alpha_2 A_1 A_2 \cos (\omega_1 - \omega_2 )t + \alpha_2 A_1 A_2 \cos (\omega_1 + \omega_2 ) t + \cdots\ </math> along with many other terms not shown. In addition to components with frequencies at the sum {{math|''Ο''<sub>1</sub> + ''Ο''<sub>2</sub>}} and difference {{math|''Ο''<sub>1</sub> β ''Ο''<sub>2</sub>}} of the two original frequencies, shown above, the output also contains sinusoidal terms at the original frequencies and terms at multiples of the original frequencies {{nobr|{{math|2 ''Ο''<sub>1</sub>}} ,}} {{nobr|{{math|2 ''Ο''<sub>2</sub>}} ,}} {{nobr|{{math|3 ''Ο''<sub>1</sub>}} ,}} {{nobr|{{math|3 ''Ο''<sub>2</sub>}} ,}} etc., called ''[[harmonics]]''. It also contains much more complicated terms at frequencies of {{nobr|{{math|''M Ο''<sub>1</sub> + ''N Ο''<sub>2</sub>}} ,}} called [[intermodulation product]]s. These unwanted frequencies, along with the unwanted heterodyne frequency, must be removed from the mixer output by an [[electronic filter]], to leave the desired heterodyne frequency.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Heterodyne
(section)
Add topic