Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Exact sequence
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications of exact sequences== In the theory of abelian categories, short exact sequences are often used as a convenient language to talk about [[subobject | subobjects]] and factor objects. The [[extension problem]] is essentially the question "Given the end terms ''A'' and ''C'' of a short exact sequence, what possibilities exist for the middle term ''B''?" In the category of groups, this is equivalent to the question, what groups ''B'' have ''A'' as a normal subgroup and ''C'' as the corresponding factor group? This problem is important in the [[classification of finite simple groups|classification of groups]]. See also [[Outer automorphism group]]. Notice that in an exact sequence, the composition ''f''<sub>''i''+1</sub> ∘ ''f''<sub>''i''</sub> maps ''A''<sub>''i''</sub> to 0 in ''A''<sub>''i''+2</sub>, so every exact sequence is a [[chain complex]]. Furthermore, only ''f''<sub>''i''</sub>-images of elements of ''A''<sub>''i''</sub> are mapped to 0 by ''f''<sub>''i''+1</sub>, so the [[homology (mathematics)|homology]] of this chain complex is trivial. More succinctly: :Exact sequences are precisely those chain complexes which are [[acyclic complex|acyclic]]. Given any chain complex, its homology can therefore be thought of as a measure of the degree to which it fails to be exact. If we take a series of short exact sequences linked by chain complexes (that is, a short exact sequence of chain complexes, or from another point of view, a chain complex of short exact sequences), then we can derive from this a '''long exact sequence''' (that is, an exact sequence indexed by the natural numbers) on homology by application of the [[zig-zag lemma]]. It comes up in [[algebraic topology]] in the study of [[relative homology]]; the [[Mayer–Vietoris sequence]] is another example. Long exact sequences induced by short exact sequences are also characteristic of [[derived functor]]s. [[Exact functor]]s are [[functor]]s that transform exact sequences into exact sequences.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Exact sequence
(section)
Add topic