Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Euler–Maclaurin formula
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Proofs == === Derivation by mathematical induction === We outline the argument given in Apostol.<ref name=":0">{{Cite journal| first = T. M. | title = An Elementary View of Euler's Summation Formula | journal = [[The American Mathematical Monthly]] | volume = 106 | date = 1 May 1999 | issue = 5 | pages = 409–418 | issn = 0002-9890| last = Apostol | doi = 10.2307/2589145| author-link= Tom M. Apostol| publisher = Mathematical Association of America| jstor = 2589145}}</ref> The [[Bernoulli polynomials]] {{math|''B<sub>n</sub>''(''x'')}} and the periodic Bernoulli functions {{math|''P<sub>n</sub>''(''x'')}} for {{math|''n'' {{=}} 0, 1, 2, ...}} were introduced above. The first several Bernoulli polynomials are <math display=block>\begin{align} B_0(x) &= 1, \\ B_1(x) &= x - \tfrac{1}{2}, \\ B_2(x) &= x^2 - x + \tfrac{1}{6}, \\ B_3(x) &= x^3 - \tfrac{3}{2}x^2 + \tfrac{1}{2}x, \\ B_4(x) &= x^4 - 2x^3 + x^2 - \tfrac{1}{30}, \\ &\,\,\,\vdots \end{align}</math> The values {{math|''B<sub>n</sub>''(1)}} are the [[Bernoulli numbers]] {{math|''B''<sub>''n''</sub>}}. Notice that for {{math|''n'' ≠ 1}} we have <math display=block>B_n = B_n(1) = B_n(0),</math> and for {{math|''n'' {{=}} 1}}, <math display=block>B_1 = B_1(1) = -B_1(0).</math> The functions {{math|''P''<sub>''n''</sub>}} agree with the Bernoulli polynomials on the interval {{math|[0, 1]}} and are [[periodic function|periodic]] with period 1. Furthermore, except when {{math|''n'' {{=}} 1}}, they are also continuous. Thus, <math display=block> P_n(0) = P_n(1) = B_n \quad \text{for }n \neq 1.</math> Let {{math|''k''}} be an integer, and consider the integral <math display=block> \int_k^{k + 1} f(x)\,dx = \int_k^{k + 1} u\,dv,</math> where <math display=block>\begin{align} u &= f(x), \\ du &= f'(x)\,dx, \\ dv &= P_0(x)\,dx & \text{since }P_0(x) &= 1, \\ v &= P_1(x). \end{align}</math> [[integration by parts|Integrating by parts]], we get <math display=block>\begin{align} \int_k^{k + 1} f(x)\,dx &= \bigl[uv\bigr]_k^{k + 1} - \int_k^{k + 1} v\,du \\ &= \bigl[f(x)P_1(x)\bigr]_k^{k + 1} - \int_k^{k+1} f'(x)P_1(x)\,dx \\ &= B_1(1)f(k+1)-B_1(0)f(k) - \int_k^{k+1} f'(x)P_1(x)\,dx. \end{align}</math> Using {{math|''B''<sub>1</sub>(0) {{=}} −{{sfrac|1|2}}}}, {{math|''B''<sub>1</sub>(1) {{=}} {{sfrac|1|2}}}}, and summing the above from {{math|''k'' {{=}} 0}} to {{math|''k'' {{=}} ''n'' − 1}}, we get <math display=block>\begin{align} \int_0^n f(x)\, dx &= \int_0^1 f(x)\,dx + \cdots + \int_{n-1}^n f(x)\,dx \\ &= \frac{f(0)}{2}+ f(1) + \dotsb + f(n-1) + \frac{f(n)}{2} - \int_0^n f'(x) P_1(x)\,dx. \end{align}</math> Adding {{math|{{sfrac|''f''(''n'') − ''f''(0)|2}}}} to both sides and rearranging, we have <math display=block> \sum_{k=1}^n f(k) = \int_0^n f(x)\,dx + \frac{f(n) - f(0)}{2} + \int_0^n f'(x) P_1(x)\,dx.</math> This is the {{math|''p'' {{=}} 1}} case of the summation formula. To continue the induction, we apply integration by parts to the error term: <math display=block>\int_k^{k+1} f'(x)P_1(x)\,dx = \int_k^{k + 1} u\,dv,</math> where <math display=block>\begin{align} u &= f'(x), \\ du &= f''(x)\,dx, \\ dv &= P_1(x)\,dx, \\ v &= \tfrac{1}{2}P_2(x). \end{align}</math> The result of integrating by parts is <math display=block>\begin{align} \bigl[uv\bigr]_k^{k + 1} - \int_k^{k + 1} v\,du &= \left[\frac{f'(x)P_2(x)}{2} \right]_k^{k+1} - \frac{1}{2}\int_k^{k+1} f''(x)P_2(x)\,dx \\ &= \frac{B_2}{2}(f'(k + 1) - f'(k)) - \frac{1}{2}\int_k^{k + 1} f''(x)P_2(x)\,dx. \end{align}</math> Summing from {{math|''k'' {{=}} 0}} to {{math|''k'' {{=}} ''n'' − 1}} and substituting this for the lower order error term results in the {{math|''p'' {{=}} 2}} case of the formula, <math display=block>\sum_{k=1}^n f(k) = \int_0^n f(x)\,dx + \frac{f(n) - f(0)}{2} + \frac{B_2}{2}\bigl(f'(n) - f'(0)\bigr) - \frac{1}{2}\int_0^n f''(x)P_2(x)\,dx.</math> This process can be iterated. In this way we get a proof of the Euler–Maclaurin summation formula which can be formalized by [[mathematical induction]], in which the induction step relies on integration by parts and on identities for periodic Bernoulli functions.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Euler–Maclaurin formula
(section)
Add topic