Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Dirac delta function
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Translation=== The integral of any function multiplied by the time-delayed Dirac delta <math> \delta_T(t) {=} \delta(t{-}T)</math> is <math display="block">\int_{-\infty}^\infty f(t) \,\delta(t-T)\,dt = f(T).</math> This is sometimes referred to as the ''sifting property''<ref>{{MathWorld|urlname=SiftingProperty|title=Sifting Property}}</ref> or the ''sampling property''.<ref>{{Cite book|last=Karris|first=Steven T.|url={{google books |plainurl=y |id=f0RdM1zv_dkC}}| title=Signals and Systems with MATLAB Applications|date=2003|publisher=Orchard Publications|isbn=978-0-9709511-6-8|language=en| page=[{{google books |plainurl=y |id=f0RdM1zv_dkC&pg=SA1-PA15 }} 15]}}</ref> The delta function is said to "sift out" the value of ''f(t)'' at ''t'' = ''T''.<ref>{{Cite book|last=Roden|first=Martin S.|url={{google books |plainurl=y |id=YEKeBQAAQBAJ}}|title=Introduction to Communication Theory|date=2014-05-17|publisher=Elsevier|isbn=978-1-4831-4556-3|language=en|page=[{{google books |plainurl=y |id=YEKeBQAAQBAJ|page=40}}]}}</ref> It follows that the effect of [[Convolution|convolving]] a function {{math|''f''(''t'')}} with the time-delayed Dirac delta is to time-delay {{math|''f''(''t'')}} by the same amount:<ref>{{Cite book|last1=Rottwitt|first1=Karsten|url={{google books |plainurl=y |id=G1jSBQAAQBAJ}}|title=Nonlinear Optics: Principles and Applications|last2=Tidemand-Lichtenberg|first2=Peter| date=2014-12-11| publisher=CRC Press|isbn=978-1-4665-6583-8|language=en|page=[{{google books |plainurl=y |id=G1jSBQAAQBAJ|page=276}}] 276}}</ref> <math display="block">\begin{align} (f * \delta_T)(t) \ &\stackrel{\mathrm{def}}{=}\ \int_{-\infty}^\infty f(\tau)\, \delta(t-T-\tau) \, d\tau \\ &= \int_{-\infty}^\infty f(\tau) \,\delta(\tau-(t-T)) \,d\tau \qquad \text{since}~ \delta(-x) = \delta(x) ~~ \text{by (4)}\\ &= f(t-T). \end{align}</math> The sifting property holds under the precise condition that {{mvar|f}} be a [[Distribution (mathematics)#Tempered distributions and Fourier transform|tempered distribution]] (see the discussion of the Fourier transform [[#Fourier transform|below]]). As a special case, for instance, we have the identity (understood in the distribution sense) <math display="block">\int_{-\infty}^\infty \delta (\xi-x) \delta(x-\eta) \,dx = \delta(\eta-\xi).</math>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Dirac delta function
(section)
Add topic