Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Differential geometry
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Symplectic geometry=== {{main|Symplectic geometry}} [[Symplectic geometry]] is the study of [[symplectic manifold]]s. An '''almost symplectic manifold''' is a differentiable manifold equipped with a smoothly varying [[non-degenerate]] [[skew-symmetric matrix|skew-symmetric]] [[bilinear form]] on each tangent space, i.e., a nondegenerate 2-[[Differential form|form]] ''ω'', called the ''symplectic form''. A symplectic manifold is an almost symplectic manifold for which the symplectic form ''ω'' is closed: {{nowrap|1=d''ω'' = 0}}. A diffeomorphism between two symplectic manifolds which preserves the symplectic form is called a [[symplectomorphism]]. Non-degenerate skew-symmetric bilinear forms can only exist on even-dimensional vector spaces, so symplectic manifolds necessarily have even dimension. In dimension 2, a symplectic manifold is just a surface endowed with an area form and a symplectomorphism is an area-preserving diffeomorphism. The [[phase space]] of a mechanical system is a symplectic manifold and they made an implicit appearance already in the work of [[Joseph Louis Lagrange]] on [[analytical mechanics]] and later in [[Carl Gustav Jacobi]]'s and [[William Rowan Hamilton]]'s [[Hamiltonian mechanics|formulations of classical mechanics]]. By contrast with Riemannian geometry, where the [[curvature]] provides a local invariant of Riemannian manifolds, [[Darboux's theorem]] states that all symplectic manifolds are locally isomorphic. The only invariants of a symplectic manifold are global in nature and topological aspects play a prominent role in symplectic geometry. The first result in symplectic topology is probably the [[Poincaré–Birkhoff theorem]], conjectured by [[Henri Poincaré]] and then proved by [[G.D. Birkhoff]] in 1912. It claims that if an area preserving map of an [[annulus (mathematics)|annulus]] twists each boundary component in opposite directions, then the map has at least two fixed points.<ref>The area preserving condition (or the twisting condition) cannot be removed. If one tries to extend such a theorem to higher dimensions, one would probably guess that a volume preserving map of a certain type must have fixed points. This is false in dimensions greater than 3.</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Differential geometry
(section)
Add topic