Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Cysteine
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Evolutionary role of cysteine == Cysteine is considered a "newcomer" amino acid, being the 17th amino acid incorporated into the [[genetic code]].<ref>{{Cite journal |last1=Osawa |first1=S |last2=Jukes |first2=T H |last3=Watanabe |first3=K |last4=Muto |first4=A |date=March 1992 |title=Recent evidence for evolution of the genetic code |journal=Microbiological Reviews |language=en |volume=56 |issue=1 |pages=229β264 |doi=10.1128/mr.56.1.229-264.1992 |issn=0146-0749 |pmc=372862 |pmid=1579111}}</ref><ref>{{Cite journal |last=Trifonov |first=Edward N. |date=September 2009 |title=The origin of the genetic code and of the earliest oligopeptides |url=https://linkinghub.elsevier.com/retrieve/pii/S0923250809000576 |journal=Research in Microbiology |language=en |volume=160 |issue=7 |pages=481β486 |doi=10.1016/j.resmic.2009.05.004|pmid=19524038 }}</ref> Similar to other later-added amino acids such as [[methionine]], [[tyrosine]], and [[tryptophan]], cysteine exhibits strong nucleophilic and redox-active properties.<ref>{{Cite journal |last1=Paulsen |first1=Candice E. |last2=Carroll |first2=Kate S. |date=2013-07-10 |title=Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery |journal=Chemical Reviews |language=en |volume=113 |issue=7 |pages=4633β4679 |doi=10.1021/cr300163e |issn=0009-2665 |pmc=4303468 |pmid=23514336}}</ref><ref>{{Cite journal |last1=Giles |first1=Niroshini M |last2=Watts |first2=Aaron B |last3=Giles |first3=Gregory I |last4=Fry |first4=Fiona H |last5=Littlechild |first5=Jennifer A |last6=Jacob |first6=Claus |date=August 2003 |title=Metal and Redox Modulation of Cysteine Protein Function |url=https://doi.org/10.1016/S1074-5521(03)00174-1 |journal=Chemistry & Biology |volume=10 |issue=8 |pages=677β693 |doi=10.1016/s1074-5521(03)00174-1 |pmid=12954327 |issn=1074-5521}}</ref> These properties contribute to the depletion of cysteine from [[Electron transport chain|respiratory chain]] complexes, such as [[Respiratory complex I|Complexes I]] and [[Complex IV|IV]],<ref>{{Cite journal |last1=Moosmann |first1=Bernd |last2=Behl |first2=Christian |date=February 2008 |title=Mitochondrially encoded cysteine predicts animal lifespan |journal=Aging Cell |language=en |volume=7 |issue=1 |pages=32β46 |doi=10.1111/j.1474-9726.2007.00349.x |pmid=18028257 |issn=1474-9718|doi-access=free }}</ref> since reactive oxygen species ([[Reactive oxygen species|ROS]]) produced by the respiratory chain can react with the cysteine residues in these complexes, leading to dysfunctional proteins and potentially contributing to aging. The primary response of a protein to ROS is the oxidation of cysteine and the loss of free thiol groups,<ref>{{Cite journal |last=Sohal |first=Rajindar S |date=2002-07-01 |title=Role of oxidative stress and protein oxidation in the aging process1, 2 |url=https://www.sciencedirect.com/science/article/pii/S0891584902008560 |journal=Free Radical Biology and Medicine |volume=33 |issue=1 |pages=37β44 |doi=10.1016/S0891-5849(02)00856-0 |pmid=12086680 |issn=0891-5849}}</ref> resulting in increased [[Thiyl radical|thiyl radicals]] and associated protein cross-linking.<ref>{{Cite journal |last1=Jacob |first1=Claus |last2=Giles |first2=Gregory I. |last3=Giles |first3=Niroshini M. |last4=Sies |first4=Helmut |date=2003-10-13 |title=Sulfur and Selenium: The Role of Oxidation State in Protein Structure and Function |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.200300573 |journal=Angewandte Chemie International Edition |language=en |volume=42 |issue=39 |pages=4742β4758 |doi=10.1002/anie.200300573 |pmid=14562341 |issn=1433-7851}}</ref><ref>{{Cite journal |last1=Nauser |first1=Thomas |last2=Pelling |first2=Jill |last3=SchΓΆneich |first3=Christian |date=2004-10-01 |title=Thiyl Radical Reaction with Amino Acid Side Chains: Rate Constants for Hydrogen Transfer and Relevance for Posttranslational Protein Modification |url=https://pubs.acs.org/doi/10.1021/tx049856y |journal=Chemical Research in Toxicology |language=en |volume=17 |issue=10 |pages=1323β1328 |doi=10.1021/tx049856y |pmid=15487892 |issn=0893-228X}}</ref> In contrast, another sulfur-containing, redox-active amino acid, methionine, does not exhibit these biochemical properties and its content is relatively upregulated in [[Mitochondrion|mitochondrially]] encoded proteins.<ref>{{citation |last1=Moosmann |first1=Bernd |first2=Parvana |last2=Hajieva |first3=Christian |last3=Behl |title=The antioxidant function of protein methionine explains about the evolution of a non-standard genetic code in mitochondria |journal=Free Radical Biology and Medicine |volume=41 |article-number=402 |doi=10.1016/j.freeradbiomed.2006.10.015 |page=S149βS150 |date=2006}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Cysteine
(section)
Add topic