Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Curium
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Compounds and reactions== {{Main|Curium compounds}} ===Oxides=== Curium readily reacts with oxygen forming mostly Cm<sub>2</sub>O<sub>3</sub> and CmO<sub>2</sub> oxides,<ref name="lenntech" /> but the divalent oxide CmO is also known.<ref name="HOWI_1972">Holleman, p. 1972</ref> Black CmO<sub>2</sub> can be obtained by burning curium [[oxalate]] ({{chem|Cm|2|(C|2|O|4|)|3}}), nitrate ({{chem|Cm|(N|O|3|)|3}}), or hydroxide in pure oxygen.<ref name="asprey" /><ref name="g1268">Greenwood, p. 1268</ref> Upon heating to 600–650 °C in vacuum (about 0.01 [[Pascal (unit)|Pa]]), it transforms into the whitish Cm<sub>2</sub>O<sub>3</sub>:<ref name="asprey">{{cite journal|last1=Asprey|first1=L. B.|title=Evidence for Quadrivalent Curium: X-Ray Data on Curium Oxides1|last2=Ellinger|first2=F. H.|last3=Fried|first3=S.|last4=Zachariasen|first4=W. H.|journal=Journal of the American Chemical Society|volume=77|issue=6|page=1707|date=1955|doi=10.1021/ja01611a108|bibcode=1955JAChS..77.1707A }}</ref><ref>{{cite journal|last1=Noe|first1=M.|title=Self-radiation effects on the lattice parameter of 244CmO2|journal=Inorganic and Nuclear Chemistry Letters|volume=7|issue=5|page=421|date=1971|doi=10.1016/0020-1650(71)80177-0|last2=Fuger|first2=J.}}</ref> : <chem>4CmO2 ->[\Delta T] 2Cm2O3 + O2</chem>. Or, Cm<sub>2</sub>O<sub>3</sub> can be obtained by reducing CmO<sub>2</sub> with molecular [[hydrogen]]:<ref>{{cite journal|last1=Haug|first1=H.|title=Curium sesquioxide Cm2O3|journal=Journal of Inorganic and Nuclear Chemistry|volume=29|issue=11|page=2753|date=1967|doi=10.1016/0022-1902(67)80014-9}}</ref> : <chem>2CmO2 + H2 -> Cm2O3 + H2O</chem> Also, a number of ternary oxides of the type M(II)CmO<sub>3</sub> are known, where M stands for a divalent metal, such as barium.<ref>{{cite journal|last1=Fuger|first1=J.|last2=Haire|first2=R.|last3=Peterson|first3=J.|title=Molar enthalpies of formation of BaCmO3 and BaCfO3|journal=Journal of Alloys and Compounds|volume=200|issue=1–2|page=181|date=1993|doi=10.1016/0925-8388(93)90491-5|url=https://zenodo.org/record/1258637}}</ref> Thermal oxidation of trace quantities of curium hydride (CmH<sub>2–3</sub>) has been reported to give a volatile form of CmO<sub>2</sub> and the volatile trioxide CmO<sub>3</sub>, one of two known examples of the very rare +6 state for curium.<ref name="CmO3" /> Another observed species was reported to behave similar to a supposed plutonium tetroxide and was tentatively characterized as CmO<sub>4</sub>, with curium in the extremely rare +8 state;<ref name="CmO4">{{cite journal |last1=Domanov |first1=V. P. |date=January 2013 |title=Possibility of generation of octavalent curium in the gas phase in the form of volatile tetraoxide CmO<sub>4</sub> |journal=Radiochemistry |volume=55 |issue=1 |pages=46–51 |doi=10.1134/S1066362213010098 |bibcode=2013Radch..55...46D |s2cid=98076989 }}</ref> but new experiments seem to indicate that CmO<sub>4</sub> does not exist, and have cast doubt on the existence of PuO<sub>4</sub> as well.<ref>{{cite journal|last1=Zaitsevskii|first1=Andréi|last2=Schwarz|first2=W. H. Eugen|date=April 2014|title=Structures and stability of AnO4 isomers, An = Pu, Am, and Cm: a relativistic density functional study.|journal=Physical Chemistry Chemical Physics|volume=2014|issue=16|pages=8997–9001|bibcode=2014PCCP...16.8997Z|doi=10.1039/c4cp00235k|pmid=24695756}}<!--|access-date=March 8, 2015--></ref> ===Halides=== The colorless curium(III) fluoride (CmF<sub>3</sub>) can be made by adding fluoride ions into curium(III)-containing solutions. The brown tetravalent curium(IV) fluoride (CmF<sub>4</sub>) on the other hand is only obtained by reacting curium(III) fluoride with molecular [[fluorine]]:<ref name = "Morrs" /> : <math>\mathrm{2\ CmF_3\ +\ F_2\ \longrightarrow\ 2\ CmF_4}</math> A series of ternary fluorides are known of the form A<sub>7</sub>Cm<sub>6</sub>F<sub>31</sub> (A = [[alkali metal]]).<ref>{{cite journal|last1=Keenan|first1=T.|title=Lattice constants of K7Cm6F31 trends in the 1:1 and 7:6 alkali metal-actinide(IV) series|journal=Inorganic and Nuclear Chemistry Letters|volume=3|issue=10|page=391|date=1967|doi=10.1016/0020-1650(67)80092-8}}</ref> The colorless [[curium(III) chloride]] (CmCl<sub>3</sub>) is made by reacting [[curium hydroxide]] (Cm(OH)<sub>3</sub>) with anhydrous [[hydrogen chloride]] gas. It can be further turned into other halides such as curium(III) bromide (colorless to light green) and [[curium(III) iodide]] (colorless), by reacting it with the [[ammonia]] salt of the corresponding halide at temperatures of ~400–450 °C:<ref>{{cite journal|title=Crystal Structures of the Trifluorides, Trichlorides, Tribromides, and Triiodides of Americium and Curium|last1=Asprey|first1=L. B.|last2=Keenan|first2=T. K.|last3=Kruse|first3=F. H.|journal=Inorganic Chemistry|volume=4|issue=7|page=985|date=1965|doi=10.1021/ic50029a013|s2cid=96551460 |url=https://digital.library.unt.edu/ark:/67531/metadc1035960/}}</ref> : <math>\mathrm{CmCl_3\ +\ 3\ NH_4I\ \longrightarrow \ CmI_3\ +\ 3\ NH_4Cl}</math> Or, one can heat curium oxide to ~600°C with the corresponding acid (such as [[hydrobromic acid|hydrobromic]] for curium bromide).<ref>{{cite journal|last1=Burns|first1=J.|title=Crystallographic studies of some transuranic trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3|journal=Journal of Inorganic and Nuclear Chemistry|volume=37|issue=3|page=743|date=1975|doi=10.1016/0022-1902(75)80532-X|last2=Peterson|first2=J. R.|last3=Stevenson|first3=J. N.}}</ref><ref>{{cite journal|last1=Wallmann|first1=J.|title=Crystal structure and lattice parameters of curium trichloride|journal=Journal of Inorganic and Nuclear Chemistry|volume=29|issue=11|page=2745|date=1967|doi=10.1016/0022-1902(67)80013-7|last2=Fuger|first2=J.|last3=Peterson|first3=J. R.|last4=Green|first4=J. L.|s2cid=97334114 }}</ref> Vapor phase [[hydrolysis]] of curium(III) chloride gives curium oxychloride:<ref>{{cite journal|last1=Weigel|first1=F.|last2=Wishnevsky|first2=V.|last3=Hauske|first3=H.|title=The vapor phase hydrolysis of PuCl3 and CmCl3: heats of formation of PuOC1 and CmOCl|journal=Journal of the Less Common Metals|volume=56|issue=1|page=113|date=1977|doi=10.1016/0022-5088(77)90224-7}}</ref> : <math>\mathrm{CmCl_3\ +\ \ H_2O\ \longrightarrow \ CmOCl\ +\ 2\ HCl}</math> ===Chalcogenides and pnictides=== Sulfides, selenides and tellurides of curium have been obtained by treating curium with gaseous [[sulfur]], [[selenium]] or [[tellurium]] in vacuum at elevated temperature.<ref>Troc, R. [https://books.google.com/books?id=vkzx_t3zLR0C&pg=PA4 Actinide Monochalcogenides, Volume 27], Springer, 2009 {{ISBN|3-540-29177-6}}, p. 4</ref><ref>{{cite journal|last1=Damien|first1=D.|title=Preparation and lattice parameters of curium sulfides and selenides|journal=Inorganic and Nuclear Chemistry Letters|volume=11|issue=7–8|page=451|date=1975|doi=10.1016/0020-1650(75)80017-1|last2=Charvillat|first2=J. P.|last3=Müller|first3=W.}}</ref> Curium [[pnictogen|pnictides]] of the type CmX are known for [[nitrogen]], [[phosphorus]], [[arsenic]] and [[antimony]].<ref name="Morrs" /> They can be prepared by reacting either curium(III) hydride (CmH<sub>3</sub>) or metallic curium with these elements at elevated temperature.<ref name="CuriumChap9">Lumetta, G. J.; Thompson, M. C.; Penneman, R. A.; Eller, P. G. [http://radchem.nevada.edu/classes/rdch710/files/curium.pdf Curium] {{webarchive|url=https://web.archive.org/web/20100717154205/http://radchem.nevada.edu/classes/rdch710/files/curium.pdf |date=2010-07-17 }}, Chapter Nine in ''Radioanalytical Chemistry'', Springer, 2004, pp. 1420–1421. {{ISBN|0387341226}}, {{ISBN|978-0387 341224}}</ref> ===Organocurium compounds and biological aspects=== [[File:Uranocene-3D-balls.png|thumb|upright=0.5|Predicted curocene structure]] Organometallic complexes analogous to [[uranocene]] are known also for other actinides, such as thorium, protactinium, neptunium, plutonium and americium. [[Molecular orbital theory]] predicts a stable "curocene" complex (η<sup>8</sup>-C<sub>8</sub>H<sub>8</sub>)<sub>2</sub>Cm, but it has not been reported experimentally yet.<ref>Elschenbroich, Ch. Organometallic Chemistry, 6th edition, Wiesbaden 2008, {{ISBN|978-3-8351-0167-8}}, p. 589</ref><ref>{{cite journal|last1=Kerridge|first1=Andrew|last2=Kaltsoyannis|first2=Nikolas|title=Are the Ground States of the Later Actinocenes Multiconfigurational? All-Electron Spin−Orbit Coupled CASPT2 Calculations on An(η8-C8H8)2(An = Th, U, Pu, Cm)|journal=The Journal of Physical Chemistry A|volume=113|issue=30|date=2009|pmid=19719318|doi=10.1021/jp903912q|pages=8737–8745|bibcode=2009JPCA..113.8737K|url=https://figshare.com/articles/Are_the_Ground_States_of_the_Later_Actinocenes_Multiconfigurational_All_Electron_Spin_Orbit_Coupled_CASPT2_Calculations_on_An_sup_8_sup_C_sub_8_sub_H_sub_8_sub_sub_2_sub_An_Th_U_Pu_Cm_/2840251}}</ref> Formation of the complexes of the type {{chem|Cm|(|n-C|3|H|7|-BTP)|3}} (BTP = 2,6-di(1,2,4-triazin-3-yl)pyridine), in solutions containing n-C<sub>3</sub>H<sub>7</sub>-BTP and Cm<sup>3+</sup> ions has been confirmed by [[Extended X-ray absorption fine structure|EXAFS]]. Some of these BTP-type complexes selectively interact with curium and thus are useful for separating it from lanthanides and another actinides.<ref name="denecke" /><ref>{{cite journal|last1=Girnt|first1=Denise|last2=Roesky|first2=Peter W.|last3=Geist|first3=Andreas|last4=Ruff|first4=Christian M.|last5=Panak|first5=Petra J.|last6=Denecke|first6=Melissa A.|s2cid=978265|title=6-(3,5-Dimethyl-1H-pyrazol-1-yl)-2,2′-bipyridine as Ligand for Actinide(III)/Lanthanide(III) Separation|journal=Inorganic Chemistry|volume=49|issue=20|date=2010|pmid=20849125|doi=10.1021/ic101309j|pages=9627–9635}}</ref> Dissolved Cm<sup>3+</sup> ions bind with many organic compounds, such as [[hydroxamic acid]],<ref name="pl1">{{cite journal|last1=Glorius|first1=M.|last2=Moll|first2=H.|last3=Bernhard|first3=G.|title=Complexation of curium(III) with hydroxamic acids investigated by time-resolved laser-induced fluorescence spectroscopy|journal=Polyhedron|volume=27|issue=9–10|page=2113|date=2008|doi=10.1016/j.poly.2008.04.002}}</ref> [[urea]],<ref name="pl2">{{cite journal|last1=Heller|first1=Anne|last2=Barkleit|first2=Astrid|last3=Bernhard|first3=Gert|last4=Ackermann|first4=Jörg-Uwe|title=Complexation study of europium(III) and curium(III) with urea in aqueous solution investigated by time-resolved laser-induced fluorescence spectroscopy|journal=Inorganica Chimica Acta|volume=362|issue=4|page=1215|date=2009|doi=10.1016/j.ica.2008.06.016}}</ref> [[fluorescein]]<ref name="pl3">{{cite journal|last1=Moll|first1=Henry|last2=Johnsson|first2=Anna|last3=Schäfer|first3=Mathias|last4=Pedersen|first4=Karsten|last5=Budzikiewicz|first5=Herbert|last6=Bernhard|first6=Gert|title=Curium(III) complexation with pyoverdins secreted by a groundwater strain of Pseudomonas fluorescens|journal=BioMetals|volume=21|issue=2|date=2007|pmid=17653625|doi=10.1007/s10534-007-9111-x|pages=219–228|s2cid=24565144}}</ref> and [[adenosine triphosphate]].<ref name="pl4">{{cite journal|last1=Moll|first1=Henry|last2=Geipel|first2=Gerhard|last3=Bernhard|first3=Gert|title=Complexation of curium(III) by adenosine 5′-triphosphate (ATP): A time-resolved laser-induced fluorescence spectroscopy (TRLFS) study|journal=Inorganica Chimica Acta|volume=358|issue=7|page=2275|date=2005|doi=10.1016/j.ica.2004.12.055}}</ref> Many of these compounds are related to biological activity of various [[microorganism]]s. The resulting complexes show strong yellow-orange emission under UV light excitation, which is convenient not only for their detection, but also for studying interactions between the Cm<sup>3+</sup> ion and the ligands via changes in the half-life (of the order ~0.1 ms) and spectrum of the fluorescence.<ref name="plb" /><ref name="pl1" /><ref name="pl2" /><ref name="pl3" /><ref name="pl4" /> There are a few reports on [[biosorption]] of Cm<sup>3+</sup> by [[bacteria]] and [[archaea]],<ref>{{cite journal|doi=10.1021/es0301166|last1=Moll|first1=H.|last2=Stumpf|first2=T.|last3=Merroun|first3=M.|last4=Rossberg|first4=A.|last5=Selenska-Pobell|first5=S.|last6=Bernhard|first6=G.|title=Time-resolved laser fluorescence spectroscopy study on the interaction of curium(III) with Desulfovibrio äspöensis DSM 10631T|journal=Environmental Science & Technology|volume=38|issue=5|pages=1455–1459|date=2004|pmid=15046347|bibcode = 2004EnST...38.1455M }}</ref><ref>{{cite journal|author=Ozaki, T.|display-authors=etal|url=http://sciencelinks.jp/j-east/article/200305/000020030503A0110480.php|archive-url=https://web.archive.org/web/20090225195752/http://sciencelinks.jp/j-east/article/200305/000020030503A0110480.php|url-status=dead|archive-date=2009-02-25|title=Association of Eu(III) and Cm(III) with Bacillus subtilis and Halobacterium salinarium|journal=Journal of Nuclear Science and Technology|date=2002|volume=Suppl. 3|pages=950–953|doi=10.1080/00223131.2002.10875626|bibcode=2002JNST...39S.950O |s2cid=98319565}}</ref> and in the laboratory both americium and curium were found to support the growth of [[methylotroph]]s.<ref>{{cite journal |last1=Remick |first1=Kaleigh |last2=Helmann |first2=John D. |title=The Elements of Life: A Biocentric Tour of the Periodic Table |journal=Advances in Microbial Physiology |publisher=PubMed Central |date=30 January 2023 |volume=82 |pages=1–127 |doi=10.1016/bs.ampbs.2022.11.001 |pmid=36948652 |pmc=10727122 |isbn=978-0-443-19334-7}}</ref>
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Curium
(section)
Add topic