Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Special pages
Niidae Wiki
Search
Search
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Category theory
(section)
Page
Discussion
English
Read
Edit
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
View history
General
What links here
Related changes
Page information
Appearance
move to sidebar
hide
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Further concepts and results === The definitions of categories and functors provide only the very basics of categorical algebra; additional important topics are listed below. Although there are strong interrelations between all of these topics, the given order can be considered as a guideline for further reading. * The [[functor category]] ''D''<sup>''C''</sup> has as objects the functors from ''C'' to ''D'' and as morphisms the natural transformations of such functors. The [[Yoneda lemma]] is one of the most famous basic results of category theory; it describes representable functors in functor categories. * [[Dual (category theory)|Duality]]: Every statement, theorem, or definition in category theory has a ''dual'' which is essentially obtained by "reversing all the arrows". If one statement is true in a category ''C'' then its dual is true in the dual category ''C''<sup>op</sup>. This duality, which is transparent at the level of category theory, is often obscured in applications and can lead to surprising relationships. * [[Adjoint functors]]: A functor can be left (or right) adjoint to another functor that maps in the opposite direction. Such a pair of adjoint functors typically arises from a construction defined by a universal property; this can be seen as a more abstract and powerful view on universal properties.
Summary:
Please note that all contributions to Niidae Wiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Encyclopedia:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Search
Search
Editing
Category theory
(section)
Add topic